

NAVAL

POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

DEPLOYING CROWD-SOURCED FORMAL
VERIFICATION SYSTEMS IN A DOD NETWORK

by

Mahmut Firuz Dumlupinar

September 2013

Thesis Advisor: Geoffrey G. Xie
Second Reader: Thomas Housel

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2013

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE
DEPLOYING CROWD-SOURCED FORMAL VERIFICATION SYSTEMS IN A
DOD NETWORK

5. FUNDING NUMBERS

6. AUTHOR(S) Mahmut Firuz Dumlupinar
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government. IRB Protocol number ____N/A____.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

Manual formal software verification is an expensive and time-consuming process. Military software is currently
verified manually by highly skilled analysts. To reduce the high costs of the formal verification, DARPA started a
Crowd-Sourced Formal Verification (CSFV) program that aims to include as many people as possible to participate in
this verification process by embedding some of the verification logics into computer games. In this study we built a
network prototype for hosting a CSFV server on a DoD network.

 The CSFV network prototype is designed according to the common security practices, necessary security
measures against possible attacks, and the Security Technical Implementation Guides (STIGs) published by DISA to
provide confidentiality, integrity and availability. Important details are presented about server operating system
selections, proper usage of necessary network services, and firewall and IDS rules for efficient network security.
Results from common network penetration test tools confirm that our prototype meets the necessary security
requirements and can be trusted on a DoD network.

14. SUBJECT TERMS crowd sourced formal verification, network security, cyber attacks,
crowdsourcing, virtualization, cloud computing, firewalls, intrusion detection systems,
network penetration test.

15. NUMBER OF
PAGES

83
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

DEPLOYING CROWD-SOURCED FORMAL VERIFICATION SYSTEMS IN A
DOD NETWORK

Mahmut Firuz Dumlupinar
Captain, Turkish Army

B.S., Turkish Military Academy, 2004

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN INFORMATION TECHNOLOGY MANAGEMENT

from the

NAVAL POSTGRADUATE SCHOOL
September 2013

Author: Mahmut Firuz Dumlupinar

Approved by: Geoffrey G. Xie
Thesis Advisor

Thomas Housel
Second Reader

Dan C. Boger
Chair, Department of Information Sciences

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Manual formal software verification is an expensive and time-consuming process.

Military software is currently verified manually by highly skilled analysts. To reduce the

high costs of the formal verification, DARPA started a Crowd-Sourced Formal

Verification (CSFV) program that aims to include as many people as possible to

participate in this verification process by embedding some of the verification logics into

computer games. In this study we built a network prototype for hosting a CSFV server on

a DoD network.

The CSFV network prototype is designed according to the common security

practices, necessary security measures against possible attacks, and the Security

Technical Implementation Guides (STIGs) published by DISA to provide confidentiality,

integrity and availability. Important details are presented about server operating system

selections, proper usage of necessary network services, and firewall and IDS rules for

efficient network security. Results from common network penetration test tools confirm

that our prototype meets the necessary security requirements and can be trusted on a DoD

network.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I.	 INTRODUCTION ... 1	
A.	 INTRODUCTION ... 1	
B.	 THE RESEARCH PROBLEM .. 2	

1.	 Problem Statement .. 2	
2.	 Purpose Statement .. 2	

C.	 RESEARCH QUESTIONS AND HYPOTHESIS 2	
D.	 THESIS ORGANIZATION ... 3	

II.	 BACKGROUND ... 5	
A.	 INTRODUCTION ... 5	
B.	 CROWDSOURCING ... 5	

1.	 A Brief History of Crowdsourcing .. 5	
2.	 Current Crowdsourcing Activities .. 6	
3.	 Linux Kernel .. 6	
4.	 reCAPTCHA ... 7	
5.	 Games with a Purpose (GWAP) Project ... 7	
6.	 Verification Games: Making Verification Fun 8	

a.	 Amazon Mechanical Turk ... 8	
b.	 SETI@home ... 9	

C.	 VIRTUALIZATION ... 9	
1.	 Virtual Machine Monitors (VMM) ... 10	
2.	 VMM Types ... 10	

a.	 Type I VMM ... 10	
b.	 Type II VMM .. 11	

3.	 Security Considerations in Virtualization 11	
a.	 Hypervisor Security .. 12	

D.	 CLOUD COMPUTING .. 13	
1.	 Characteristics of Cloud Computing .. 14	
2.	 Cloud Computing Deployment Models ... 16	

E.	 CLOUD COMPUTING SERVICE MODELS ... 18	
F.	 ENTERPRISE NETWORK SECURITY ... 19	

1.	 Network Security Concepts .. 19	
2.	 Security Vulnerabilities, Threats and Countermeasures 20	

a.	 Security Vulnerabilities .. 21	
b.	 Security Threats ... 21	
c.	 Security Countermeasures ... 24	

III.	 NETWORK DESIGN ... 27	
A.	 INTRODUCTION ... 27	
B.	 NETWORK DESIGN CONSIDERATIONS AND GUIDELINES 27	
C.	 NETWORK TOPOLOGY ... 28	
D.	 SEGMENTED DESIGN ... 30	

1.	 Border Router and Firewall ... 30	

 viii

2.	 IDS .. 31	
3.	 Game Servers and Database Server .. 32	
4.	 Reverse Proxy Server ... 33	

E.	 ADDITIONAL SECURITY MEASURES .. 34	
1.	 Encryption ... 34	
2.	 Authentication ... 34	

IV.	 IMPLEMENTATION .. 35	
A.	 INTRODUCTION ... 35	
B.	 GENERAL NETWORK INFORMATION .. 36	

1.	 Network Topology Implementation .. 36	
2.	 Implementation of Servers ... 37	
3.	 Running Firewall Rules .. 41	
4.	 Reverse Proxy Deployment .. 44	
5.	 IDS Deployment .. 45	
6.	 Data Encryption .. 46	
7.	 System Validation via Penetration Testing Tools 47	

V.	 CONCLUSION ... 51	
A.	 SUMMARY AND CONCLUSION ... 51	
B.	 FUTURE WORK AND CONSIDERATIONS ... 52	

APPENDIX .. 53	

LIST OF REFERENCES ... 61	
INITIAL DISTRIBUTION LIST .. 65	

 ix

LIST OF FIGURES

Figure 1.	 Type I and type II VMM (From Thomas, 2013) .. 11	
Figure 2.	 NIST visual model of cloud computing (From Damiani, 2011) 13	
Figure 3.	 Hybrid cloud (From Shilovitsky, 2013) .. 18	
Figure 4.	 Comparison of service models (From Lau, 2011) .. 19	
Figure 5.	 The security triad (From Chou, 2012) .. 20	
Figure 6.	 Distributed Denial of Service attack (From Masikos et.al., 2004) 22	
Figure 7.	 CSFV Network topology. ... 29	
Figure 8.	 Firewall design. ... 31	
Figure 9.	 IDS deployment. ... 32	
Figure 10.	 Database server. .. 33	
Figure 11.	 Reverse proxy server. .. 33	
Figure 12.	 Subnets in the CSFV Network. ... 36	
Figure 13.	 CSFV network implementation. ... 37	
Figure 14.	 VMware ESXi vSphere Client. ... 38	
Figure 15.	 VMware ESXi command shell. .. 39	
Figure 16.	 The SSL module for CentOS . .. 47	
Figure 17.	 Attacking on the game server via LOIC. .. 48	

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1.	 Cloud benefits: efficiency and innovation (From Takai, 2012) 15	
Table 2.	 Virtualized systems. .. 39	
Table 3.	 Non-virtualized Systems. .. 40	
Table 4.	 Necessary packages from CentOS repository ... 41	
Table 5.	 SNORT alerts .. 49	

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF ACRONYMS AND ABBREVIATIONS

CA Certification Authority

CSFV Crowd Sourced Formal Verification
CSP Cloud Service Provider

DDOS Distributed Denial of Service
DMZ Demilitarized Zone

DREN Defense Research And Engineering Network
EC2 Amazon Elastic Compute Cloud

HTTPS Hypertext Transfer Protocol Secure
ICMP Internet Control Message Protocol

IDS Intrusion Detection System
NAT Network Address Translation

SQL Structured Query Language
SSL Secure Sockets Layer

STIG Security Technical Implementation Guide
TCP Transmission Control Protocol

TLS Transport Layer Security
UDP User Datagram Protocol
XSS Cross-Site Scripting

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGMENTS

I want to express my sincere gratitude to my advisor, Professor Geoffrey G. Xie

for his unlimited support and guidance, and to Charles Prince for his considerate and

responsive working hours with me on the CSFV project. Also I would like to thank to

Professor Thomas Housel for providing the best understanding of thesis research and

being my second reader. I am fortunate to have John D. Fulp as my Network Security

instructor and I appreciate his help he gave whenever I knocked on his door. Another

person who helped me decrease the tension and stress with his humorous approach was

Umit and I want to thank to him as well.

In addition I owe my deepest gratitude to my mother, Aycan, my father, Necati,

and my sister, Zeynep, for supporting and encouraging me even at the hardest moments

of my research and during the long hours in my basement lab. Without their endless love

and support this study would not have been completed.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. INTRODUCTION

In 2014 cyber attacks on critical infrastructure are expected to increase

significantly and consequently cause security expenditures to reach a peak of $86 billion

(Rivera, 2013). Even after all the attention devoted to this threat, cyber-related problems

do not seem to be resolved. According to the task force report of the Defense Science

Board, the advanced cyber threat the Department of Defense (DoD) faces is too

prevalent, and critical IT structures may stop functioning in case of a sophisticated and

well-resourced attack vector (Kaminski, 2012). This threat becomes even more disturbing

when we realize that a malicious user can cripple the Unified Threat Management System

(10 million lines of code) with a malware (125 lines of code) (Dean, 2013).

Being under the cyber threat of its opponents, the DoD has taken the necessary

precautions in different areas. One of those areas is the formal verification of military

software, which is used to process classified information. One to five bugs are found in a

thousand lines of code of military software, and most of them are related to security

vulnerabilities.

Currently formal verification is performed manually by very specialized engineers

and this is a very expensive process (Dean, 2013). The Defense Advanced Research

Projects Agency (DARPA) initiated a project to lower the costs of the verification

process and increase the efficiency levels by harnessing the power of a crowd. Crowd

Sourced Formal Verification (CSFV) aims to perform the necessary software verification

by creating computer games, which are fun to play. The goal is to make the crowd play

the games and have the military software verified in the background. Even though it

sounds innovative to use the crowd to solve a problem, it is not a new concept.

Crowdsourcing was used by DARPA before to design a next-generation combat vehicle

and to reconstruct shredded documents, such as those found after military engagements

(Montalbano, 2011).

 2

DARPA plans to run its CSFV systems on the Internet‒‒possibly using cloud

infrastructure (Dean, 2013). By using Amazon Compute Cloud (EC2) systems, DARPA

will use ordinary people and make them play the games, which will enable the software

verification with the help of complex algorithms.

This thesis aims to design and prototype a secure network for CSFV systems, and

this network will be run on a limited access intranet such as the Defense Research and

Engineering Network (DREN), whereas DARPA’s initial gaming environment will exist

on the Internet, open to everyone.

B. THE RESEARCH PROBLEM

1. Problem Statement

DARPA’s CSFV systems are designed to reside on the Internet, and they

welcome anyone to log on and play the games. However, there is currently no network

architecture to run the games on classified intranets such as DREN, the Non-classified

Internet Protocol Router Network (NIPRNET) or the Secret Internet Protocol Router

Network (SIPRNET).

2. Purpose Statement

The purpose of this thesis will be to design and prototype a secure network

architecture for implementing Crowd Sourced Formal Verification methods on

classified/unclassified networks.

C. RESEARCH QUESTIONS AND HYPOTHESIS

In this thesis these research questions will be answered and explained:

1. What are the common security threats and solutions for securing enterprise

network resources?

2. What are the key benefits of virtualization, and how can virtualization be

implemented on DREN while meeting security requirements?

3. What are the possible security concerns of cloud computing?

4. What are the unique security challenges for deploying CSFV on DREN?

 3

D. THESIS ORGANIZATION

Chapter I: “Introduction” (Introductory information about formal verification

issues and the need for efficient software verification)

Chapter II: “Background” (Review of definitions and details of concepts related

to CSFV such as crowdsourcing, cloud computing, virtualization and enterprise network

security)

Chapter III: “Network Design” (Design of optimally most secure network in

regard to the potential security vulnerabilities/threats specifically for CSFV networks)

Chapter IV: “Implementation” (Creation of the CSFV network prototype)

Chapter V: “Conclusion” (Summary, future work and recommendations)

 4

THIS PAGE INTENTIONALLY LEFT BLANK

 5

II. BACKGROUND

A. INTRODUCTION

This chapter will summarize the core concepts that will be reviewed in this thesis.

In the following section basic information about crowdsourcing will be presented,

including its history, current use, and vast benefits. Sections C and D will explain two

necessary platforms for CSFV systems, which are virtualization and cloud-computing.

Finally this chapter concludes with information about the current cyber security threats

pertaining to CSFV networks.

B. CROWDSOURCING

Crowdsourcing provides a workspace to be used for a large scale of activities.

These activities vary from journalism to image indexing and from language translation to

entertainment (Howe, 2009). Crowdsourcing is the outcome of two words: “crowd” and

“outsourcing” and is meant to accomplish something with the help of untrained, ordinary

people, rather than professionals and experienced employees. The crowd may be drawn

from either a large or small population. The activity, which is done by the crowd may

help for projects such as designing a task, developing a technology, solving an algorithm

or classifying, collecting or analyzing large amounts of data (Bell, 2010). Nowadays

typical examples of crowdsourcing are created online, but the first examples of

crowdsourcing were quite different. Organizations have leveraged crowdsourcing

solutions throughout history.

1. A Brief History of Crowdsourcing

The history of crowdsourcing dates back to 1714 when the Longitude Contest was

organized by the English government. The purpose of this contest was to enable the

government to find a prototype of a navigation device, which might even be developed

by a common citizen, to help sailors navigate easily (Lynch, 2010). Another early

example is the Toyota Logo Contest in 1936. Twenty-seven thousand people attended

this event, and the best design created by someone in this crowd was chosen to be the

 6

Toyota Logo. In 1955 the Sydney Opera House was also designed and built as a result of

a public contest, which encouraged ordinary people from 32 countries to help this design

project (Lynch, 2010).

2. Current Crowdsourcing Activities

Crowdsourcing provides opportunities to solve the chronic problems worldwide

that have been waiting to be solved for years. The diverse base of knowledge and abilities

is unlimited in a crowd. The technique of crowdsourcing would match this diverse base

with the needs of people using this technique (Howe, 2009). Currently crowdsourcing

activities around the world are increasing rapidly. Most IT companies are handing their

technical support elements to forums in which users share knowledge. In journalism,

sector leaders like Reuters and the BBC are increasingly choosing public resources to

crowdsource important work, such as investigating government wrongdoings or reports

about local events. In March 2009 public opinion was largely gathered and analyzed

through the White House website, and those results greatly affected political

decisions (Howe, 2009).

Another area of crowdsourcing is the freelance sector. Although it is a local

Chinese firm, the freelancing website Zhubajie.com has more than seven million

subscribers, and it is still growing (Lynch, 2012). Such growth is hardly surprising. It is a

fact that a large population helps a lot in crowdsourcing. In the following subsections

some globally known crowdsourcing examples will be presented along with some local

examples.

3. Linux Kernel

Open source software development projects inherently allow users to see, change

or add code freely to the already developed software. In the 1990s this open source

development environment enabled the creation of an important product, Linux. Its

creator, Linus Torvalds, declared that the operating system that he had developed was

open to any critics, and he was looking for others who could help improve it (Howe,

2009). By getting the crowd’s help, today Linux is in use everywhere—from

supercomputers to hand-held devices.

 7

4. reCAPTCHA

Originated at Carnegie Mellon University by Professor Luis Von Ahn,

reCAPTHCA is designed to digitize the text in the books. It has been used to digitize The

New York Times archives. Another use of reCAPTCHA is to protect websites from bots

that are designed to infiltrate the restricted areas in the network (Bell, 2010).

reCAPTCHA provides websites with the images of words that bot software is

unable to read. The registered websites help verify these images and present them as

CAPTCHA words, and the words are sent to digitization projects. This service is

calculated to provide 12,000 man-hours per day of free labor (Bell, 2010). Popular

websites such as Facebook, Twitter and Ticketmaster are effectively using this service in

the customer validation process (Bell, 2010).

5. Games with a Purpose (GWAP) Project

Another application in the vast area of crowdsourcing is using simple games to

achieve a purpose that is much more valuable than just relaxing. Because billions of

people including children are interested in games, and maybe millions of them are

spending several hours daily playing games, scientists thought that these valuable hours

could be used beneficially in parallel with the fun part. Carnegie Mellon University

Professor Luis Von Ahn created the GWAP project to use game playing hours for a

scientifically valuable purpose, such as Internet image indexing, monitoring security

cameras and performing language translation (Ahn, 2006). Other possible application

areas could be IT security, Internet accessibility, adult content filtering, and web search

(Ahn, 2006). The main idea behind this project is to have people play games and use the

results of the games for another purpose. One of the most popular of these games, the

ESP game designed by Ahn, is designed for two players. These players must agree on the

best word that represents the image presented to them. They do this without knowing that

they are seeing the same image (Bell, 2010).

The concept of playing games is applied to other areas as well. A game such as

“Foldit,” which was designed by researchers from the University of Washington, allows

users to play with protein-like structures by folding and unfolding them. When the

 8

protein structure is modified games scores are automatically recorded with regard to the

success level of how accurate the folding is (Bell, 2010).

6. Verification Games: Making Verification Fun

This project is directly related to the CSFV concept, and it aims to make people

play games as a part of the CSFV project. Ernst (2012) investigated ways to lower the

costs of software verification by developing game-playing-based verification systems. In

his latest work he introduces and explains the technique he used in the game “Pipe Jam,”

which is used to map a software and to correct potential problems in that software.

His game is comprised of boards, levels and worlds in which the gamer plays with

pipes that are linked to each other. The gamer tries to pass a ball into different sizes of

pipes. The width of a pipe represents the type of variable that the pipe represents. A wide

pipe stands for a variable that is permitted to contain a “null” value whereas a narrow

pipe represents a variable that is guaranteed to be non-null.

As with the general concept of CSFV, a gamer does not have to know anything

about the software he helps to verify. Gamers do not have to have confidentiality

privileges, and they can be anyone from public.

The Pipe Jam game is analogous to the dataflow network for a program. It maps

the source code’s type flow properties into a network of pipes. Essentially, this system

converts the software into a game that can be played by ordinary people. After the player

finishes a portion of the game the final board configurations can be translated into a proof

of correctness for the original program (Ernst, 2012).

a. Amazon Mechanical Turk

Amazon Mechanical Turk is a platform where organizations find

employees for their projects. Amazon Web Services provide this platform to match the

job requesters with the potential workers who can be anywhere around the world. Job

requesters post the jobs to be done on the Amazon Mechanical Turk web page and let the

workers choose one or more to complete for a monetary payment (Bell, 2010).

 9

b. SETI@home

Another example of Internet supported crowdsourcing, SETI@home was

founded in 1999 and aims to use the computing power of the computers in a crowd to

find any proof of extraterrestrial life. Scientists managing SETI@home regard the project

supported by the crowd more important than their supercomputers because of the

computing power within the crowd (Howe, 2009).

C. VIRTUALIZATION

Obviously crowdsourcing and virtualization are different academic disciplines,

and it can be a little puzzling for the reader to jump directly from crowdsourcing to

virtualization. However because of this thesis’ interdisciplinary nature these two areas of

study need to be explicitly stated here.

Virtualization is the abstraction of computing resources such as processing power,

storage and network bandwidth. It helps simulate software or hardware and creates a

simulated environment, which is known as virtual machine (Scarfone, Souppaya and

Hoffman, 2011). Virtualized environments can have one or more of these goals:

• To allow any device connected to a network to access any network-
enabled application, even if the device and the application were not
designed to work compatibly.

• To isolate two or more applications to provide security or to maintain
network resources.

• To isolate an application from the operating system to work with any other
version of the operating system.

• To increase the number of users an application can be used for support by
running the application on different instances of the operating system.

• To optimize the usage of a system by decreasing the time system resources
remain idle.

• To increase system availability via redundancy by guiding the user to a
running system if the previous system fails (Kusnetzky, 2011).

After a brief introduction to virtualization and its use for data centers, an overview

of the types of virtualization to be used throughout the CSFV project will be provided in

this section.

 10

1. Virtual Machine Monitors (VMM)

VMM is a piece of software that gives the abstraction between machine hardware

and the virtual machine. VMM records every activity happening within the limits of the

virtual machine. It provides resources when necessary, and it can also forbid the usage of

resources.

2. VMM Types

To virtualize an operating system, all instructions should be executed by

hardware, software or a combination of both. These combinations have formed different

VMM models. The models presented in this thesis will be Type I and Type II VMM

models.

a. Type I VMM

This type runs directly on the machine hardware; that is why this type of

VMM is called “bare metal.” A Type I VMM would most likely be an operating system

or kernel that can support virtual machines (Figure 1). It would perform scheduling and

resource allocation for each virtual machine on the system. Processors should be in

compliance with every virtualization requirement that is needed by Type I. This

compliance should provide the necessary protection for the real system from virtual

machine borne intrusions (DoD ESX Server Guide, 2008).

 11

Figure 1. Type I and type II VMM (From Thomas, 2013)

b. Type II VMM

This type of VMM runs on a host operating system and is limited to the

operating system resources, such as memory management, processor scheduling, resource

allocation and hardware drivers (Figure 1). Because of these dependencies any operating

system-related security issue might affect the stability of the Type II VMM (DoD ESX

Server Guide, 2008).

3. Security Considerations in Virtualization

The overall security of a virtualization solution is dependent on the security level

of each of the components. These components could be the hypervisor, host computer,

host operating system (OS), guest OSs, applications on the system and storage.

Virtualization users should be sure about the security levels of these elements by taking

appropriate measures such as controlling access to administrator privileges, having up-to-

date software, performing monitoring and analysis of logs, using anti-malware software,

using host-based firewalls and any other mechanism to prevent possible attacks.

Having these security measures for virtualization may not suffice to secure a

system, however, because the virtualization needs of organizations change in every

situation, and each situation requires different security approaches. Here, we will dig

deeper into these security approaches to clarify this concept and explain more about

hypervisor security.

 12

a. Hypervisor Security

The hypervisor known as Virtual Machine Monitor needs to be secured

using methods similar to those used to protect other software. The overall security of the

virtualized system is directly linked to the virtualized management system. Such systems

should be under absolute control of the administrators. For example when the

administrator needs to connect to the virtualized system, remote access to administration

interfaces should be restricted by a firewall. If the communication is carried by an

untrusted network, data should be under encryption using Federal Information Processing

Standard (FIPS) approved methods (Scarfone, Souppaya and Hoffman, 2011).

Access should be limited to the hypervisor, especially if it is a bare-metal

type hypervisor. Although most of the bare-metal hypervisor access methods are based

on user name and password, some of them still offer additional methods that grant access

to the hypervisor management interface.

Unlike bare-metal hypervisors, hosted virtualization environments do not

generally have access controls. Because of this lack of security measures, anyone who

can install an application on the OS can manipulate the hypervisor. This vulnerability

necessitates the policies for organizations specifying the privilege level of accessing the

hypervisor. The following guiding rules can help implement the right policy for

hypervisors.

• Install all updates for the hypervisor as soon as they are released.

• Protect network communications via authentication and encryption
using FIPS 140-2 cryptographic modules.

• Synchronize the virtualized environment to a trusted time server.

• Remove all unused hardware connected to a host system.

• Do not use hypervisor file-sharing systems if they are not needed.
The file-sharing systems are considered possible attack vectors
(Scarfone, Souppaya and Hoffman, 2011).

Additionally, hosted virtualization means that more threats will be around

the system because the hosting OS will possibly have some vulnerabilities in addition to

hypervisor security concerns. Unnecessary applications on the host OS should be

 13

removed because the security of each guest OS will be affected by the host OS security

(Scarfone, Souppaya and Hoffman, 2011).

So far the biggest concern of security personnel is hiding hypervisors from

the eyes of attackers. However, hypervisors have certain characteristics that make

attackers aware of their existence. The hypervisor’s interactions with file systems,

registry and related virtual drives all give some information to potential attackers. To

prevent such attacks against a hypervisor using virtualized systems, organizations should

take into consideration the risks and vulnerabilities (Scarfone, Souppaya and Hoffman,

2011).

D. CLOUD COMPUTING

According to the National Institute of Standards and Technology (NIST)

Definition of Cloud Computing (Mell and Grance, 2009), cloud computing is a robust and

dependable pool of network resources, which includes computing, storage, applications

and databases. One of the most important characteristics of this pool is its rapidly

releasable and on-demand nature. This system would require the least management effort

and less service provider interaction (Mell and Grace, 2009). A graphic representation of

the NIST cloud computing model is shown in Figure 2.

Figure 2. NIST visual model of cloud computing (From Damiani, 2011)

 14

1. Characteristics of Cloud Computing

According to the NIST Definition of Cloud Computing, characteristics of this

computing include on-demand self-service, broad network access, resource pooling, rapid

elasticity and measured service. These characteristics make cloud computing more

beneficial in terms of efficiency and innovation in comparison to the current computing

environment as shown in Table 1.

 15

Cloud Benefits Current Environment
• Improved asset utilization

(server utilization > 60‐ 70%)
• Aggregated demand and

accelerated system consolidation
(e.g., Federal Data Center
Consolidation initiative)

• Improved productivity in
application development,
application management,
network, and end‐user devices

• Low asset utilization (server
utilization < 30% typical)

• Fragmented demand and
duplicative systems

• Difficult to manage systems

Cloud Benefits Current Environment
• Shift focus from asset

ownership to service
management

• Tap into private sector
innovation

• Encourage entrepreneurial
culture

• Improve link to emerging
technologies (e.g., devices)

• Burdened by asset
management

• De-coupled from private sector
innovation engines

• Risk-averse culture

Table 1. Cloud benefits: efficiency and innovation (From Takai, 2012)

Several cloud computing benefits are detailed in the following paragraphs.

On-demand self-service: The user can alter unilaterally the system capabilities

such as computing, server and storage settings, if needed, and there is no need for

interaction with a Cloud Service Provider (CSP).

Broad Network Access: Cloud capabilities are available for a wide variety of

thick and thin clients through standard access methods. Those clients could be mobile

phones, laptops, netbooks, tablet computers or personal digital assistants (PDAs) (Smoot

and Tan, 2012).

Resource pooling: End-user needs are the main factor that dynamically assigns

and reassigns the computing sources of the CSP. Those resources could include storage,

processing power, memory, network bandwidth and virtual machines. The CSP has

 16

relative freedom in notifying the end-user of the actual physical locations of provided

resources. End-users are thought to be able to access these resources through an intranet

if they are internal users and through the Internet if they are outsiders (Smoot and Tan,

2012).

Rapid Elasticity: The CSP can quickly change the system capabilities to both

scale in and out according to the user needs. End-users mostly think that system

capabilities to provision are unlimited and usable (Mell and Grance, 2009).

Measured Service: Cloud computing capabilities are under the control and

surveillance of the CSP, with the help of a measuring system that often operates on a pay-

per-use basis. This system provides transparency of used service (storage, computing,

bandwidth) for both the cloud provider and the end-user (Mell and Grance, 2009).

2. Cloud Computing Deployment Models

There are four deployment models of cloud computing:

Public Cloud: This type of cloud is available to almost anyone in the crowd who

can access the Internet. With the development of cloud technologies, service providers

operating in this area are increased. Some widely known examples include Amazon’s

Elastic Compute Cloud (EC2), Rackspace’s Cloud Offerings, and IBM’s BlueCloud

(Winkler, 2011). While these providers primarily offer Infrastructure service, there are

others that give Application layer service, such as Google’s AppEngine and Windows’

Azure Services platform.

From a security perspective public clouds can be considered both secure and

unsecure. They are considered secure because public clouds are mainly operated by large

scale CSPs. Therefore they should have enough security measures, including access

control, data ownership and encryption (Winkler, 2011). On the other hand, end-users

leave their data in the hands of the provider not knowing whether it is secure or not. CSPs

have no obligation to their customers regarding the location of the stored data. If data is

stored offshore in another country, the data is expected to be subject to the laws of the

hosting country (Winkler, 2011).

 17

Private Clouds: Private clouds are hosted internally and basically serve only one

organization. Unlike data on public clouds, data on private clouds are not mixed with

external users’ data. However, organizations may want to provide data isolation to satisfy

the needs of the organization’s own subunits (Winkler, 2011). Private clouds can be

owned, maintained and operated by either the organization itself, a third party or a

combination of both (Mell and Grance, 2009).

From a security perspective private clouds have more constraints than public

clouds because small scale organizations may not address the computation needs as do

large scale CSPs operating public clouds. It would also be incorrect to assume that

private clouds are more secure than public ones (Winkler, 2011). Considering that private

clouds use virtualization to save more on computing resources, private cloud providers

should obtain measures, such as hypervisor and virtual machine security, to secure the

virtualization environment (Winkler, 2011). The point of operating private clouds is that

we can address the security issues by ourselves and are free to use any further measures

that we deem appropriate. We have the chance to implement the security architecture

according to organizational needs. In this sense a private DoD cloud can employ stricter

security measures than a private cloud that is owned by a business corporation.

Community Clouds: The cloud infrastructure is created for the use of multiple

independent organizations that have the same concerns (that is, security, mission,

regulation, policy or compliance). The system may be owned and maintained by each of

the organizations, a third party or a combination of them (Mell and Grance, 2011). This

model presents a valuable opportunity for the organizational entities that have similar

legal and compliance restrictions. Different levels of community clouds are being

considered both by the governments of the United States and the European Union.

Governments will benefit because inter-government business transactions are considered

to be processes in a possessed environment and will cause no additional costs as does the

Internet (Winkler, 2011).

Hybrid Clouds: This cloud infrastructure can be a combination of two or more

different cloud types, as shown in Figure 3. Here separate and different clouds remain as

a unique entity, and each of them is linked to others via a technology that enables secure

 18

data transmission (Mell and Grance, 2011). Hybrid clouds are generally preferred by

entities that operate private clouds. The main reason for this preference could be either

security related or financial. An entity such as the DoD can have its confidential data in

the private cloud and store unclassified data in the public cloud. Here hybrid cloud

infrastructures will allow the necessary data transfer of the organization (Winkler, 2011).

Figure 3. Hybrid cloud (From Shilovitsky, 2013)

E. CLOUD COMPUTING SERVICE MODELS

Software as a Service (SaaS): The applications running on a CSP’s

infrastructure are the services provided to the consumer. Those applications could either

be accessed via thin clients, such as a web browser, or via the interface of software. The

consumer has no privilege to change any settings of infrastructure, servers, operating

systems, or storage except for some limited application configurations (Mell and Grance,

2011). Moreover, consumers may not want to change those settings. Google’s GMAIL or

Yahoo mail services can be considered examples of SaaS (Winkler, 2011).

Platform as a Service (PaaS): The consumer is capable of using his own

application or an application provided by the CSP, as well as the libraries, services and

tools (Mell and Grance, 2011). The consumer has control only over the applications he

uses. He does not and cannot control the infrastructure, operating systems or servers

provided by the CSP. In this sense, the PaaS is similar to the SaaS model. However, the

PaaS model is different because the consumer owns the application. Google App Engine

could be an example of the PaaS model (Winkler, 2011).

 19

Infrastructure as a Service (IaaS): This service model has the most flexible

components provided to the consumer. In this model consumers can change applications,

storage components, operating systems, databases and even some limited networking

entities such as host firewalls (Mell and Grance, 2011). Some CSPs, including Amazon,

go further providing services that the consumer can access through a platform of routers,

switches and data centers (Winkler, 2011). This model is compared to other cloud

computing models in Figure 4.

Figure 4. Comparison of service models (From Lau, 2011)

From a security perspective the IaaS model is preferable for an organization like

the DoD. No matter which cloud type the DoD utilizes, the necessary solution seems to

be the IaaS model.

F. ENTERPRISE NETWORK SECURITY

1. Network Security Concepts

The term “network security” is derived from “computer security.” According to

NIST, computer security comprises the necessary protection mechanisms to provide

 20

confidentiality, integrity and availability of data being processed (Stallings and Brown,

2008). These three terms are widely known as the CIA Triad, and they lay out the

essential principles concerning data and information security. The CIA Triad, shown in

Figure 6, refers to the confidentiality, integrity and availability of data. Confidentiality

avoids the unnecessary disclosure of information to unauthorized parties. Integrity

protects information so that it cannot be changed in an unauthorized manner. Availability

makes sure that information is always available for authorized users and keeps the system

in service (Stallings and Brown, 2008).

Figure 5. The security triad (From Chou, 2012)

2. Security Vulnerabilities, Threats and Countermeasures

As former Secretary of Defense Leon Panetta noted repeatedly, the next Pearl

Harbor is expected to happen soon, but this time from the cyber domain (Panetta, 2012).

Current Secretary of Defense Chuck Hagel also drew attention to the importance of cyber

security from a global perspective (Hagel, May 2013). Indeed, providing cyber security is

firstly a macro level necessity. According to the Advanced Cyber Threat Report cyber

threats share almost the same importance level as nuclear armament issues (Defense

Science Board, 2013). In this thesis study we will use an enterprise level approach and

analyze vulnerabilities, possible threats and necessary cyber countermeasures to mitigate

the security risks related to cloud computing.

 21

a. Security Vulnerabilities

In the security context, when we refer to security vulnerabilities we mean

the vulnerabilities of system resources such as computing power and storage. This

resource could be damaged or changed in such a way that it differs from what it is

supposed to be. The resource may be leaky, giving information to unauthorized parties.

Also the resource could be unavailable or very slow, and it may not serve system users as

expected (Stallings and Brown, 2008).

Unnecessary open ports: An open port is used for communication

between computer systems on a network. A designated software works on a single port

(e.g., Mail service works on port 25 on most computers). When a port is open it

continuously listens for possible communications intended for it. If the service running

on the port is unnecessary that port should be closed to decrease the vulnerability level.

Unpatched systems: System security vulnerabilities exist in almost all

computer systems and software. They are supposed to be patched by the vendors to avoid

vulnerabilities because hackers/attackers look for holes in such systems to exploit them

via malicious codes (Gregory, 2010). Most software vendors react quickly to distribute

patches to fix the security holes, and system users are expected to apply those patches.

When necessary patches are not installed on the system, it becomes vulnerable to possible

threats.

b. Security Threats

A security threat is the possibility of an adverse condition affecting

computer systems. This threat could be realized from outside the enterprise or even from

within an enterprise by a disgruntled employee (Gregory, 2010).

Denial of Service (DoS): The DoS prevents or limits the intended use of

communication infrastructures. An attacker can scale his attack to a limited level such as

the recording of security audits. Sometimes he aims to take the whole network down by

disabling it or overloading the network with random messages to downgrade performance

levels (Stallings and Brown, 2008).

 22

A developed form of DoS attack is the Distributed Denial of Service

(DDoS) attack, which targets network resources by overwhelming traffic. DDoS attacks

could originate from thousands, or even hundreds of thousands of systems. Highly

complicated DDoS attacks use a botnet (see Figure 7), which is a collection of zombie

computers, controlled by botnet operators (Gregory, 2010).

Figure 6. Distributed Denial of Service attack (From Masikos et.al., 2004)

Sequence Number: Sequence number attacks attempt to hijack or fail a

TCP session between two parties by guessing the sequence number of any of the TCP

packets and achieving a correct timing. The attacker then sends false packets to either one

of the parties pretending to be a valid sender.

Smurf: A smurf attack includes a large number of fake Internet Contol

Message Protocol (ICMP) echo requests. The ICMP packets are sent to the broadcasting

address of the target network, causing all the devices to respond with ICMP packets as

well. The attacker changes the “from” part of the packets to the target system’s IP

address. When all of the devices send replies to the echo request the target system gets

overloaded (Gregory, 2010).

 23

Spam: Spam attacks comprise a high volume of emails which mostly have

commercial origins. Spam on the Internet is estimated to account for 90% of all email

communication. Spam aims to degrade the performance of network devices by evading

frequently used spam filters (Gregory, 2010).

Phishing: Phishing is a type of spam, and it is performed by sending mails

while masquerading as official parties such as banks, hospitals or government agencies.

After defrauding the mail recipients, the attacker gathers some important personal

information like credit card or social security numbers (Gregory, 2010).

SQL (Structured Query Language) Injection: SQL injection attacks are

one of the most significant threats to websites and databases. This type of attack mainly

aims to introduce some malicious input, such as SQL codes, to a website and then gather

confidential or other sensitive information from the linked database. The basic cause of

SQL injection attacks is insufficient input validation measures (Halfond and Orso, 2005).

This type of attack succeeds when input from a website visitor is accepted as a database

SQL query without being validated. The attacker then becomes able to perform his SQL

query embedded in the input for the website. In this way the intruder can gather, modify

and delete data in the database. Clearly it is a threat for all three domains of information

security (i.e., confidentiality, integrity and availability). In our proposed CSFV project to

be run on DREN, the CSFV website could be vulnerable to this kind of attack because of

the nature of its web-based applications.

Cross Site Scripting (XSS): An XSS threat resembles the previous threat

of SQL injection in the way that a website lacks security measures to check the input

coming from users. XSS targets the website as content defacement or DDoS attacks,

whereas SQL injection aims to manipulate the database behind the website (Ernst, 2009).

According to past research XSS attacks moved to the top of the cyber threat assessment

in documents such as “SANS Top 25 Most Dangerous Software Errors” and Open Web

Application Security Project (OWASP) lists, passing the famous buffer overflow attacks.

Basically XSS attacks use special characters when giving input to Hyper Text Mark-up

Language (HTML) documents such as adding <script> to inputs to invoke the

JavaScripts interpreter. When the browser does not perform input validation, the attacker

 24

becomes successful and finds ways to further exploit the website such as account

hijacking, cookie poisoning and even Denial of Service (Shar and Tan, 2012).

c. Security Countermeasures

Encryption composes the essential part of network security and security

countermeasures. It includes two main pieces of information security: Symmetric Key

Encryption and Asymmetric Key Encryption. In short, symmetric encryption means

having a single key for each cryptographic algorithm, whereas asymmetric encryption

uses two different keys, one of which would be known by public (Diffie and Helman,

1976). The other key is supposed to be kept secret by its owner and would be used to

decrypt the messages that were previously encrypted by the other public key. Key

distribution in symmetric encryption is known to be easy because there is only a single

key to be controlled by two users. Although key distribution is more difficult in

asymmetric ciphers, it is more secure. The common feature of both symmetric and

asymmetric ciphers is that the algorithm would be known by everyone, but the key is

supposed to be known just by owner as explained in Kerckhoffs’s principle (Kerckhoffs,

1883).

The network security concept also includes practical applications such as

IPsec technology, firewalls and authentication (Tanenbaum, 2003). Some of these

applications will be used as system security measures in the experimentation sections of

this thesis.

IPsec (IP Security): Being originally a communications security measure,

IPsec was created to fill the security gap throughout Internet. The argument at the first

point was to provide data security either end-to-end fashion or just on the network with

unaware users. After long discussions among security experts a security model emerged,

and it was designed to provide network level security (Tanenbaum, 2003). IPsec has two

modes of operation, which are transport mode and tunnel mode. The advantage of tunnel

mode is that it adds another IP layer onto the packet, making data transfer easier and

concealing flow of data in a better way.

 25

Firewalls: The need for firewalls emerged after fast improvement of

networks by means of connectivity and speed. Especially when networks overcame the

size of premises and started forming Wide Area Networks (WAN) with the need for

better connectivity, network input-output controls became more important. Then firewalls

started to be used (Stallings, 2008). Essentially a firewall is composed of two routers

working as packet filters and an application gateway. The point here is to force all of the

traffic–‒incoming and outgoing‒–to use the route through the firewall. This way the

firewall will allow or prohibit certain IP packets depending on whether the packets are

authorized or not. This allow-or-prohibit decision is made by using IP numbers and port

numbers. For instance, firewalls should prohibit data traffic coming to port 23, which is a

telnet port (Tanenbaum, 2003).

Intrusion Prevention Systems (IPS): An IPS is a network-based

Intrusion Detection System (IDS) with an additional capability of dropping packets and

blocking traffic as well as detecting malicious traffic and sounding alarms. IPSs can

either be in a form of host based or network based (Stallings, 2008).

A host-based IPS can check packets depending on their signatures or by

using heuristics. Signature checking is controlling the payloads coming with the packets.

The drop or allow decision is made depending on the presence of malicious content.

When heuristics are used, the IPS looks for anomalies and misbehaviors of packets which

can be either a modification of system resources, privilege-escalation exploits, buffer-

overflow exploits or access to email contact lists (Stallings, 2008).

A network-based IPS is an inline device that has the capability of

inspecting Transmission Control Protocol (TCP) packets by tearing them down. It applies

this inspection on every incoming data flow, and when a malicious behavior is seen, all

the future data packets pertaining to that data flow are dropped. Some of the techniques

used by network-based IPS systems to find malicious packets are pattern matching,

stateful matching and protocol anomaly (Stallings, 2008). An example of network-based

IPS is SNORT, which is an open-source, network-based, intrusion prevention system. It

can employ signature-based, protocol-based and anomaly-based inspection.

 26

THIS PAGE INTENTIONALLY LEFT BLANK

 27

III. NETWORK DESIGN

A. INTRODUCTION

In this chapter a secure CSFV network design will be discussed, key network

design questions will be asked, potential security vulnerabilities and threats specifically

relevant to CSFV networks will be presented and the necessary network components for

optimal system security will be explained.

Before examining the network design, it is important to understand the following

facts about the surrounding environment:

• The games and the database infrastructure are not yet released at the time
this chapter is being written, so the design principles in this document will
refer to presentations, drafts or other kinds of documents related to CSFV
studies of CSFV vendors or DARPA.

• The network infrastructure will be focused on security design, which does
not mean that performance factors of the network are totally ignored;
rather they will be discussed optimally with a security emphasis.

• This system will first be deployed on the NPS Intranet and then transferred
to DREN. Design decisions will be made according to Defense
Information Systems Agency (DISA) Security Technical Implementation
Guides (STIG).

• The necessary security measures such as the location of firewalls, usage of
IPS or IDS, network segmentation for better security and specific services
(reverse proxy) will be discussed in this chapter. More detailed design
parameters such as operating systems, firewall-IDS rules, and
virtualization technologies to be used in the CSFV network will be
presented in Chapter 4.

B. NETWORK DESIGN CONSIDERATIONS AND GUIDELINES

Several network design publications were used as guidelines while creating the

CSFV network. The first of those publications is written by the National Institute of

Standards and Technology: NIST Special Publication (SP) 800-44, Guidelines on

Securing Public Web Servers, explains how to operate public-facing web servers for

organizations such as the DoD and the private sector. It presents general

recommendations about web servers, including operating system (OS) choice,

 28

virtualization of OSs and communication security between web servers and database

servers.

CSFV networks would run on DREN-owned infrastructure, so the initial design

principles should be also in compliance with the publications, which set networking rules

for DREN. Network Infrastructure STIG (2007) and Web Server STIG (2006) are two

publications that we used to build our network. According to these documents an

optimum level of network security should be provided by the following security

measures:

• DoD networks should be layered according to the information security
levels that those layers contain.

• The security in-depth principle should be used in locating the network
components.

• DoD system administrators should install, maintain and operate IDS inside
their networks with the capability of logging.

• Firewalls and web proxies should be deployed for perimeter security.

• Web servers and database servers should reside on separate devices.

• Web servers should use Secure Sockets Layer (SSL) and Transport Layer
Security (TLS).

C. NETWORK TOPOLOGY

We had three main goals before starting to design this network: to create a

topology that shows the physical and logical elements of the network; to secure the

network components against the most common threats of the day and from ones possible

in the near future; and to prevent those security measures from degrading the throughput

of the network.

There were a couple of issues in mind in the design process:

• securing the network from both Internet and possible insider attacks,

• using a multi-layered security approach to secure sensitive and classified
information such as the database server,

• having additional systems for logging, encryption and intrusion detection
(SANS Institute, 2003).

 29

Figure 7. CSFV Network topology.

To examine the architecture in our network, we focused on the following seven

questions:

• Why do we use virtualization technology for game servers and database
servers?

• Why are game servers and database servers designed to reside on separate
physical servers rather than being virtualized on the same machine?

• Why do we use IDS, not IPS?

• Why do we use two separate IDSs?

 30

• What is the design principle related to using two firewalls, and what are
their roles?

• What is our goal in using a reverse proxy?

• Is encryption necessary in CSFV network design, and how will it
function?

D. SEGMENTED DESIGN

In this section detailed answers will be given to the preceding questions by

partitioning the network (Figure 7) and explaining it part by part.

1. Border Router and Firewall

There will be a router and a firewall at the point where our network connects to

the Naval Postgraduate School (NPS) website (nps.edu), as shown in Figure 7. The router

and firewall can be either separate devices, or they could be designed to reside on the

same physical server as a multi-functional system. The decision on this location will be

given at the implementation phase.

When choosing the type of firewall, we had a couple of options. It could be a

packet filter firewall, which would operate at Layer 3, a stateful inspection firewall

operating at Layer 4 or a deep packet inspection firewall, which additionally inspects

application level loads. A packet filter firewall would be a poor choice because this type

of firewall accepts every packet without looking at the destination port. The third choice,

a deep packet inspection firewall, would possibly create a choke point at the entrance of

the network and decrease the throughput. A stateful inspection firewall was the optimal

solution both for the IP packet inspection security and for the system performance.

Choosing to use stateful inspection firewalls is also necessary in utilizing the second

firewall, which comes behind the switch. The application level packet inspection job of

the two firewalls would be executed by the IDSs. Again, this decision was based on

system performance concerns, not to mention the high cost of deep packet inspectors or

the technical difficulty in utilizing them effectively.

The first firewall will be configured to inspect packets which are coming to the

reverse proxy server that will be in the demilitarized zone (DMZ), whereas the second

 31

firewall looks into the packets coming to the database server. This second firewall only

allows the packets coming from the address of game servers to database server. In case of

a compromise of the reverse proxy, the attacker will not be able to access the database

server because of this second firewall behind the DMZ.

Figure 8. Firewall design.

2. IDS

To further protect the required network additional elements, in this phase we had

the option of using IPS, IDS or both. When we consider that IPS would inspect a packet

and sometimes necessarily drop it, we identified this possibility as a drawback for

network throughput by generating false alarms (i.e., false positives). That is the reason

we chose to use IDS. IDS will stay on the network and watch the ongoing traffic without

interfering. It will start an alarm when malicious packets or abnormal network activity are

detected. IDS will inspect the packets by comparing them to attack signatures or pre-

installed IDS rules (DISA, 2007). The reason we use two separate IDS devices is to

provide security in depth throughout the network. While the first IDS is inspecting the

traffic in the DMZ, the second IDS will operate in a more secure part of the network and

will look for anomalies or attack signatures targeting the database server.

 32

Figure 9. IDS deployment.

3. Game Servers and Database Server

Game servers in the DMZ will be virtualized on the same physical server to

provide efficient resource utilization. The number of game servers will initially be two,

and this initial design will test the systems in a simple infrastructure with as few negative

factors as possible. Furthermore, the CSFV network would eventually be deployed on a

DoD cloud (Dean, 2013), and a virtualized environment on the NPS network will help us

find and solve any potential vulnerabilities related to virtualization before this final

deployment.

We plan to operate the game servers in a virtualized environment; however, the

database server will reside on another physical server. The reason for this design is to

have multiple security layers in the network and to prevent any attacker from gaining

access to our database server after compromising a game server. It is basically a two-fold

security measure. Firstly, we avoid a virtualization-related “escape attack,” in which an

attacker easily jumps to another virtualized system after accessing one virtualized

environment. Secondly, our design makes an attack more difficult by putting the database

in the trusted layer of our network.

 33

Figure 10. Database server.

4. Reverse Proxy Server

A reverse proxy will be running between the game servers and their clients. It will

serve as a proxy server operating in the reverse direction. The clients of game servers will

not know the IP address of the game servers; rather they will know the address of the

reverse proxy server and communicate with it. Because reverse proxies are specially

designed systems they are more trusted and secure than regular servers.

Additional features of reverse proxies are caching and load balancing. Caching

increases the speed of the network by keeping the most frequently used records-data and

retrieving them upon request. Load balancing will distribute the traffic of Hyper Text

Transfer Protocol (HTTP) and Hyper Text Transfer Protocol Secure (HTTPS) over the

two game servers, which will allow us to increase the number of game servers as the

number of gamers expands. Moreover a load-balanced server will withstand the high

volume of requests during a possible DoS attack by distributing the workload to many

servers.

Figure 11. Reverse proxy server.

 34

E. ADDITIONAL SECURITY MEASURES

1. Encryption

Data traffic between the reverse proxy server and its clients will be encrypted

using SSL/TLS. The outcome traffic will be HTTPS which is, in short, an HTTP session

encrypted with SSL/TLS. The only port that will be open is port 443 (DISA, 2006).

It is also determined that encrypting only the communication between server

clients and the reverse proxy server would be enough. Other than that the traffic between

the game servers and database server will not be encrypted to keep performance levels

high.

2. Authentication

Another fact about SSL/TLS encryption is that it will provide server/client

authentication by exchanging digital signatures between the reverse proxy server and its

client. When a gamer wants to access a game site SSL/TLS authentication will occur, and

the browser of the gamer will handshake with the server via the server’s digital signature.

This digital signature can be provided in two ways: creating and getting it verified from a

third party Certificate Authority (CA) or by creating and signing itself (Tracy, 2007).

Here, the digital signature will not be provided by a third party, it will be created by the

server itself.

User authentication with passwords and user names will be provided by the

gaming software.

 35

IV. IMPLEMENTATION

A. INTRODUCTION

In the previous chapter we have mentioned facts about the network design and

topology and explained the design process including the proper locations of network

elements, necessary services to be used by those elements and security concepts to be

applied to provide confidentiality, integrity and availability. We have also validated the

deployment of separate subnets and security components according to the necessary

documents of DISA-DoD.

In this chapter we will explain how we implemented our system with a slight

difference from the initial design. We will show the details, such as IP addressing-

subnetting, server operating system selections, proper usage of the necessary network

services, firewall rules and IDS rules for efficient network security. At the end we will

perform a network penetration test with popular attack tools.

We will not discuss the troubles we came across while implementing the firewall

and IDS rules although there were many, and we spent a considerable amount of time

troubleshooting them. In particular, Redhat license expirations, conflicts between firewall

rules and reverse proxy encryption issues were some of those troubles that we needed to

address.

 36

B. GENERAL NETWORK INFORMATION

1. Network Topology Implementation

Figure 12. Subnets in the CSFV Network.

Subnetting is necessary in the networks to maintain security. Our network

elements are distributed through three subnets (Figure 12), which are 172.20.104.0,

10.0.0.0 and 192.168.0.0. While nps.edu maintains a subnet of 255.255.0.0 for the

172.20.104.0 network, the author used 255.255.255.0 subnet both for 10.0.0.0 and

192.168.0.0 networks. The main idea behind having separate subnets is to provide

security in depth and to have a security-enhanced network architecture.

After creating the initial design for the CSFV network architecture we decided to

make some small changes on the first design. The first of those changes is to remove the

border router and replace it with the reverse proxy.(Figure 13) With this change the

landing machine of the network becomes the reverse proxy, which also runs a firewall on

itself. By moving the reverse proxy to a different network than the game servers, we aim

to avoid a possible attack scenario that can compromise the game servers by estimating

their IP address range. Because those servers will be on separate networks, the attacker

will not easily use a network scanner (such as nmap) and get access to the game servers.

The second change to the initial design is to configure the second IDS as a host-

based IDS, rather than a network-based IDS. With this change our goal is to run the first

IDS to detect network-based attacks such as man-in-the-middle, packet sniffing and

network scanning, whereas the second IDS is to be run on a server (database server) and

detect the attacks, such as DDoS and password attacks.

 37

Figure 13. CSFV network implementation.

2. Implementation of Servers

There are a total of four servers, two IDS machines and two firewalls in the CSFV

network. Each of them is either virtualized on a physical server or not virtualized,

depending on its usage. For example, the reverse proxy server stays at the entrance of the

network as a border router and forwards traffic back and forth. Because it also runs a

firewall on it, we gave it a separate non-virtualized machine. On the other hand, the

backend servers, which we use as game servers, run on a virtualized environment called

Vmware ESXi.

 38

Figure 14. VMware ESXi vSphere Client.

We used VMware ESXi as the bare-metal operating system to virtualize the game

servers and to make the network more efficient. As DISA STIG about VMware ESXi 5

requests, we installed and maintained the server and database operating systems through

ESXi shell and the software called vSphere Client (Figure 14).

In this process the usage of ESXi shell was very helpful because it can be

managed by connecting through a secure shell (Figure 15). ESXi shell is useful because it

does not need a direct connection with the ESXi virtualization server. It is enough to have

a remote connection to reverse proxy and use secure shell to access the virtualization

server.

 39

Figure 15. VMware ESXi command shell.

VIRTUALIZED	 SYSTEMS	 ON	 CSFV	 NETWORK	

VM	
NAME	

ROLE	 HOSTNAME	 IP	 ADDRESS	 OPERATING	 SYSTEM	

ESXi	 1	 WEB	 SERVER	 csfv5	 10.0.0.234	 RED	 HAT	 ENTERPRISE	
LINUX	 6.4	

ESXi	 1	 WEB	 SERVER	 csfv6	 10.0.0.235	 RED	 HAT	 ENTERPRISE	
LINUX	 6.4	

ESXi	 2	 IDS	 -‐	 1	 swing	 10.0.0.236	 RED	 HAT	 ENTERPRISE	
LINUX	 6.4	

ESXi	 3	 DATABASE	 SERVER	
and	 IDS-‐2	

csfv7	 192.168.0.11	 RED	 HAT	 ENTERPRISE	
LINUX	 6.4	

Table 2. Virtualized systems.

As it is seen from the Table 2, there are three bare-metal virtualization operating

systems in the network. ESXi-2 runs the game servers at 10.0.0.0 network, ESXi-1 runs

the first IDS server at 10.0.0.0 network and ESXi-3 runs the database server and the

second IDS server at 192.168.0.0 network.

The non-virtualized systems (Table 3) consist of a reverse proxy server and

firewall server, which run on the CentOS 6.4 operating system. They use CentOS because

the first CSFV systems, which would run on Amazon cloud architecture, EC2, would

have CentOS as a server operating system. CentOS shares the same source code as Red

 40

Hat, and the main difference between them is that the necessary update packages are

publicly open source (Red Hat Enterprise Linux Installation Guide, 2013).

NON-‐VIRTUALIZED	 SYSTEMS	 ON	 CSFV	 NETWORK	
ROLE	 HOSTNAME	 IP	 ADDRESS	 OPERATING	 SYSTEM	

REVERSE	 PROXY	 +	
FIREWALL	 csfv4	 172.20.104.233	 CENTOS	 6.4	

FIREWALL-‐2	 second	
chance	 10.0.0.21	 CENTOS	 6.4	

Table 3. Non-virtualized Systems.

Additionally, we downloaded and installed the necessary software packages from

Red Hat repository to run the games appropriately. The necessary coordination was done

with the contactor from TopCoder (CSFV PI Meeting, 2013). In total, 16 packages are

displayed in this chapter, and they are installed particularly to run the games. The

remaining 422 packages, which are necessary for any other Linux box, are shown in the

Appendix.

 41

collectd.x86_64 4.10.9-1.el6 @epel

epel-release.noarch 6-8 @epel

gccxml.x86_64 0.9.0-0.12.20120309.el6 @epel

ius-release.noarch 1.0-11.ius.el6 @ius

joe.x86_64 3.7-4.el6 @epel

kernel.x86_6 2.6.32-
220.17.1.el6.centos.plus

@centosplus

kernel.x86_64 2.6.32-
358.6.1.el6.centos.plus

@centosplus

kernel-devel.x86_64 2.6.32-
220.17.1.el6.centos.plus

@centosplus

kernel-devel.x86_64 2.6.32-
358.6.1.el6.centos.plus

@centosplus

kernel-
firmware.noarch

2.6.32-
358.6.1.el6.centos.plus

@centosplus

kernel-
headers.x86_64

2.6.32-
358.6.1.el6.centos.plus

@centosplus

links.x86_64 1:2.2-12.el6 @epel

mongo-10gen.x86_64 2.4.3-mongodb_1 @10gen

mongo-10gen-
server.x86_64

2.4.3-mongodb_1 @10gen

nginx.x86_64 1.4.1-1.el6.ngx @nginx

xmlstarlet.x86_64 1.3.1-1.el6 @epel

Table 4. Necessary packages from CentOS repository

3. Running Firewall Rules

The CSFV network uses the Linux IPtables application that is embedded on the

Red Hat/CentOS operating systems to define firewall rules for the firewall servers. We

chose to use the Linux IPtables feature because it does not need any additional hardware

or software, which would incur additional cost; it is a powerful tool used world-wide, and

it is flexible enough to give the system administrator a wide area of rule options.

IPtables operates by using the “TABLE” concept, which has “CHAINs”. The two

main tables are “NAT” and “FILTER.” The NAT table has PREROUTING,

POSTROUTING and OUTPUT chains. On the other hand, the FILTER table includes

 42

INPUT, OUTPUT and FORWARD chains. IPtables also has the feature of user-defined

rules.

Our IPtables rules include two tables. The “NAT” table provides the network with

Network Address Translation (NAT) to access outside of the network. It is also a tool to

enhance security and availability of the network. The NAT rules make the servers inside

our network access the IP range outside of the CSFV network by getting different IP

addresses.

The FILTER table does most of the work in the network. It accepts certain IP

addresses and ports, drops unwanted IP traffic for security or performance reasons and

logs the IP packets, which were dropped for further inspection.

Our first firewall (csfv4.ern.nps.edu) has the rules to accept incoming valid

packets. It is set to allow the incoming traffic to the server’s 22 and 443 ports.

-A INPUT -s 0/0 -i eth0 -d 172.20.104.233 -p TCP --dport
443 -j ACCEPT
-A INPUT -s 0/0 -i eth0 -d 172.20.104.233 -p TCP --dport
22 -j ACCEPT
-A INPUT -p icmp -j ACCEPT
-A INPUT -p tcp -m state --state RELATED,ESTABLISHED -j
ACCEPT
-A OUTPUT -s 172.20.104.233 -o eth0 -d 0/0 -p tcp --sport
22 -j ACCEPT
-A OUTPUT -p tcp -m state --state NEW,RELATED,ESTABLISHED -
j ACCEPT
-A FORWARD -p tcp -m state --state RELATED,ESTABLISHED -j
ACCEPT
-A FORWARD -p tcp --dport 22 -m state --state
RELATED,ESTABLISHED -j ACCEPT

 43

Csfv4.ern.nps.edu has the rules to drop the invalid packets, spoofed packets,
XMAS scan packets and NULL scan packets, which are techniques for port scanning.

-A INPUT -m state --state INVALID -j DROP
-A FORWARD -m state --state INVALID -j DROP
-A OUTPUT -m state --state INVALID -j DROP
-A INPUT -s 10.0.0.0/24 -i eth0 -d 172.20.104.233 -p tcp -
j DROP
-A INPUT -s 192.168.0.0/24 -i eth0 -d 172.20.104.233 -p
tcp -j DROP
-A INPUT -s 10.0.0.0/24 -i eth0 -d 172.20.104.233 -p udp -
j DROP
-A INPUT -s 192.168.0.0/24 -i eth0 -d 172.20.104.233 -p
udp -j DROP
-A INPUT -p tcp --tcp-flags ALL ALL -j DROP
-A INPUT -p tcp --tcp-flags ALL NONE -j DROP

We used also DROP policies to define a default rule for packets.

-P INPUT DROP
-P OUTPUT DROP
-P FORWARD DROP

For logging dropped packages:
-A INPUT -m limit --limit 15/minute -j LOG --log-level 4 --
log-prefix "DROPPED PACKETS_FIRUZ: "

 44

The second firewall, “Second Chance,” has the rules for allowing the traffic
between the game servers and the database server and drop else.

Rules to accept necessary packets:

-A INPUT -s 10.0.0.1 -i eth0 -d 10.0.0.21 -p TCP --dport
22 -j ACCEPT
-A OUTPUT -s 10.0.0.21 -o eth0 -d 10.0.0.1 -p tcp --sport
22 -j ACCEPT
-A OUTPUT -s 10.0.0.21 -o eth1 -d 192.168.0.11 -p TCP --
sport 22 -j ACCEPT
-A INPUT -s 192.168.0.11 -i eth1 -d 10.0.0.21 -p tcp --
dport 22 -j ACCEPT
-A INPUT -p tcp -m state --state RELATED,ESTABLISHED -j
ACCEPT
-A OUTPUT -p tcp -m state --state NEW,RELATED,ESTABLISHED -
j ACCEPT
-A FORWARD -p tcp -m state --state RELATED,ESTABLISHED -j
ACCEPT
-A FORWARD -p tcp --dport 22 -m state --state
RELATED,ESTABLISHED -j ACCEPT
-A FORWARD -s 10.0.0.234 -d 192.168.0.11 -p tcp --dport
27017 -m state --state RELATED,ESTABLISHED -j ACCEPT
-A FORWARD -s 10.0.0.235 -d 192.168.0.11 -p tcp --dport
27017 -m state --state RELATED,ESTABLISHED -j ACCEPT
-A INPUT -p icmp -j ACCEPT
-A OUTPUT -p icmp -j ACCEPT

The rule to log malicious or unnecessary traffic:

-A INPUT -m limit --limit 15/minute -j LOG --log-level 4 --
log-prefix "DROPPED PACKETS_FIRUZ: "

Rules to drop invalid packets:

-A INPUT -m state --state INVALID -j DROP
-A FORWARD -m state --state INVALID -j DROP
-A OUTPUT -m state --state INVALID -j DROP
-P INPUT DROP
-P OUTPUT DROP
-P FORWARD DROP

4. Reverse Proxy Deployment

As mentioned previously, the reverse proxy is implemented outside of the

10.0.0.0 network. It is done this way to provide more security by letting game servers

stay on a subnet other than the reverse proxy.

 45

An Apache web server was configured to provide the reverse proxy function.

When a user types “csfv4.ern.nps.edu” in his browser, our web server directs this request

to one of the game servers and gathers the data by load balancing the user requests.

The Apache configuration rules, which reside at /var/httpd/conf/httpd.conf, enable

the Apache server to transfer the files from game servers to the users and to load balance

the requests. We added these rules to the configuration file of Apache on

csfv4.ern.nps.edu:
<IfModule mod_proxy.c>
ProxyRequests Off
<Proxy *>
 Order deny,allow
 Allow from all
</Proxy>
#The name of the load balancer is “mycluster “which will
#distribute all requests between 10.0.0.234 and 10.0.0.235
<Proxy balancer://mycluster>
BalancerMember http://10.0.0.234:80
BalancerMember http://10.0.0.235:80
</Proxy>
ProxyPass / balancer://mycluster
ProxyPreserveHost On
ProxyVia On
SSLProxyEngine on
ProxyPass / http://10.0.0.234:80
ProxyPass / http://10.0.0.235:80
ProxyPassReverse / http://10.0.0.234:80
ProxyPassReverse / http://10.0.0.235:80

5. IDS Deployment

As we mentioned earlier, firewall rules will operate at layer 4, inspecting the

socket pairs. Because we did not use a deep packet inspection firewall to inspect the

packet traffic at the application level, we should use an IDS device to watch the traffic

above layer 4. We chose Snort as our network monitoring and IDS solution.

Snort is an open source tool, which can serve as a sniffer, logger or a network-

based intrusion detection system. There are many organizations around the world that use

SNORT for intrusion detection. It is also used for protecting the DREN network on the

NPS campus.

 46

Snort has some rule sets as the default. In addition, other necessary packages can

be installed or user-defined packages can be created (Alder, 2004). We used Snort’s

predefined packages for the CSFV network. Being deployed both on the 10.0.0.0 subnet

and 192.168.0.0 subnet, Snort will use a wide range of rule sets to detect malicious

traffic, some of which are bad data traffic, exploits about mysql, sql injection, web

attacks, DDoS, flash, chat and browser vulnerabilities. The Snort rules on CSFV network

include:
include $SO_RULE_PATH/bad-traffic.rules
include $SO_RULE_PATH/chat.rules
include $SO_RULE_PATH/dos.rules
include $SO_RULE_PATH/exploit.rules
include $SO_RULE_PATH/icmp.rules
include $SO_RULE_PATH/imap.rules
include $SO_RULE_PATH/misc.rules
include $SO_RULE_PATH/multimedia.rules
include $SO_RULE_PATH/netbios.rules
include $SO_RULE_PATH/nntp.rules
include $SO_RULE_PATH/p2p.rules
include $SO_RULE_PATH/smtp.rules
include $SO_RULE_PATH/snmp.rules
include $SO_RULE_PATH/specific-threats.rules
include $SO_RULE_PATH/web-activex.rules
include $SO_RULE_PATH/web-client.rules
include $SO_RULE_PATH/web-iis.rules
include $SO_RULE_PATH/web-misc.rules

6. Data Encryption

Data encryption is implemented for the data in motion on the CSFV network. As

previously stated SSL protocol is used to encrypt the data flowing between the game

players and the reverse proxy server. Because port 80 would be closed on the firewall of

csfv4.ern.nps.edu, all data traffic would go through port 443, which is used by HTTPS.

The data traffic on the CSFV network, however, will be unencrypted going through port

80. Here, the idea is that if we encrypt the moving data inside the network it needs to be

decrypted on the reverse proxy server, re-encrypted and served to the clients. If a

malicious user can get to the reverse proxy server as the man-in-the-middle he can also

process the data, and the security would be worthless (Kew, 2003). Thus; we use SSL

encryption between clients and the reverse proxy server.

 47

The necessary SSL module (mod_ssl) for the CentOS operating system to encrypt

the data traffic was downloaded from the CentOS repository (Figure 16). It runs as an

Apache httpd module dependent.

Figure 16. The SSL module for CentOS .

7. System Validation via Penetration Testing Tools

To test the capability of Snort, we directed some attacks on the 10.0.0.0 subnet.

The first attack tool we used is Nmap, which is widely used to map networks by scanning

ports and gathering port information. We scanned the 10.0.0.0 network range with Nmap

and triggered Snort.

The second tool we used to test Snort is Low Orbit Ion Cannon (LOIC). This tool

sends thousands of tcp, udp or http packets to make DDoS attacks on specific IP

addresses or web sites. It is widely used on Internet to attack targets.

We used LOIC to perform attacks on the second game server’s (csfv6-

10.0.0.235) port 80 using udp packets (Figure 17). This attack is also caught by Snort

(Table 5).

 48

Figure 17. Attacking on the game server via LOIC.

 49

 SNORT ALERTS
1 [**] [1:100000160:2] COMMUNITY SIP TCP/IP message

flooding directed to SIP proxy [**]
[Classification: Attempted Denial of Service]

[Priority: 2]
08/04-04:54:48.095433 10.0.0.235:593 ->

10.0.0.51:34225
TCP TTL:64 TOS:0x0 ID:0 IpLen:20 DgmLen:40 DF

***A*R** Seq: 0x0 Ack: 0xF97CB988 Win: 0x0 TcpLen: 20

2 [**] [1:100000160:2] COMMUNITY SIP TCP/IP message
flooding directed to SIP proxy [**]

[Classification: Attempted Denial of Service]
[Priority: 2]

08/04-04:54:48.095960 10.0.0.51:34225 ->
10.0.0.235:1084

TCP TTL:55 TOS:0x0 ID:23251 IpLen:20 DgmLen:44
******S* Seq: 0xF97CB987 Ack: 0x0 Win: 0x400

TcpLen: 24
TCP Options (1) => MSS: 1460

3 [**] [116:59:1] (snort_decoder): Tcp Window Scale
Option found with length > 14 [**]

[Priority: 3]
08/04-04:54:49.016109 10.0.0.51:60511 -> 10.0.0.235:1
TCP TTL:52 TOS:0x0 ID:51460 IpLen:20 DgmLen:60
U*PF Seq: 0x6BC901C6 Ack: 0xBAB16756 Win: 0xFFFF

TcpLen: 40 UrgPtr: 0x0
TCP Options (5) => WS: 15 NOP MSS: 265 TS: 4294967295 0
SackOK

4 [**] [122:1:0] (portscan) TCP Portscan [**]
[Priority: 3]
08/04-04:55:44.906805 10.0.0.51 -> 10.0.0.2
PROTO:255 TTL:0 TOS:0x0 ID:27082 IpLen:20 DgmLen:160

DF

5 [**] [1:100000160:2] COMMUNITY SIP TCP/IP message
flooding directed to SIP proxy [**]

[Classification: Attempted Denial of Service]
[Priority: 2]

08/04-04:55:47.361994 10.0.0.51:40883 ->
10.0.0.21:49157

TCP TTL:53 TOS:0x0 ID:59640 IpLen:20 DgmLen:44
******S* Seq: 0x4C1BBD2 Ack: 0x0 Win: 0x400 TcpLen:

24
TCP Options (1) => MSS: 1460

Table 5. SNORT alerts

 50

THIS PAGE INTENTIONALLY LEFT BLANK

 51

V. CONCLUSION

A. SUMMARY AND CONCLUSION

Manual formal software verification is an expensive and time-consuming process.

The verification of military software is currently performed by highly skilled analysts

(Dean, 2013). To reduce the high costs of the formal verification, DARPA started a

Crowd-Sourced Formal Verification (CSFV) program in 2011. The goal of the program

is to encourage as many people as possible to participate in this verification process by

embedding some of the verification logics into computer games that are fun to play.

In this study the CSFV network is designed and implemented according to the

common security practices, necessary security measures against possible attacks, and

DISA STIGs to configure network components. After validation and verification steps we

observe that the system is working well with all its security elements, and it can be

trusted to deploy on a secure DoD network. We recommend that the DoD install and

experiment with our CSFV network prototype on its systems.

The main goal of this thesis study is to design and prototype a secure and robust

infrastructure for CSFV games. After going through a review of the literature and

carrying out the design and implementation steps, we conclude that our CSFV system

prototype provides these key features:

IP address filtering and NAT: Our CSFV system prototype provides IP address

and port filtering with its firewall servers. First firewall rules are set to prevent network

attacks by dropping spoofed, invalid and malicious packets, such as XMAS and NULL

scan packets. Also the first firewall logs those malicious packets. Furthermore this

firewall server provides network address translation rules to use a different set of IP

addresses from those used by the external network. Our second firewall, on the other

hand, allows communication only between the game servers and the database server. This

firewall provides a NAT solution as well.

Network monitoring and intrusion detection: We implemented SNORT as an

IDS on both 10.0.0.0 and 192.168.0.0 subnets to monitor the network activity. SNORT

 52

uses a wide range of rule sets to detect malicious traffic, including sql injection, web

attacks, DDoS, flash, and browser vulnerabilities. In Chapter IV we tested the network

security levels with common attack/scan tools.

Further security for game servers with a reverse proxy server: By deploying a

reverse proxy server outside the CSFV network, we aimed to avoid direct communication

between game players and the CSFV game servers. In our CSFV network prototype the

reverse proxy server hands over the data from the game servers to the game players. In

this way we tried to reduce the risk of compromise of any game servers. The reverse

proxy also load balanced the game servers depending on the number of game players.

Secure data transfer over SSL: All the game data flowing between the reverse

proxy server and game players are encrypted by the SSL protocol, and they use port 443.

B. FUTURE WORK AND CONSIDERATIONS

This section presents further methods of increasing the security levels of the

CSFV network prototype:

• Currently game servers on the CSFV network are kept on the same subnet
for the sake of network performance and simplicity. However, to provide
even more security, each game server can be placed in separate subnets to
prevent simultaneous compromise of the game servers.

• There is a single database to store both game data and user data. A
separate database can be designated only for user data to create another
security layer for user privacy. Game data would then stay on a different
database.

• Network based attacks can be augmented including social engineering
attacks and other network penetration tools.

• Alternative scenarios can be created to isolate game servers from the
reverse proxy in case of a compromise of the reverse proxy server.

 53

APPENDIX

The Necessary Yum Packages to Run CSFV Games:

MAKEDEV.x86_64 3.24-6.el6 @base
abrt.x86_64 2.0.8-15.el6.centos @base
abrt-addon-kerneloops.x86_64 2.0.8-15.el6.centos @base
abrt-libs.x86_64 2.0.8-15.el6.centos @base
acl.x86_64 2.2.49-6.el6 @base
alsa-lib.x86_64 1.0.22-3.el6 @base
apr-util.x86_64 1.3.9-3.el6_0.1 @base
audit-libs.x86_64 2.2-2.el6 @base
atk.x86_64 1.28.0-2.el6 @base
autoconf.noarch 2.63-5.1.el6 @base
automake.noarch 1.11.1-4.el6 @base
avahi-libs.x86_64 0.6.25-12.el6 @base
basesystem.noarch 10.0-4.el6 @base
bash.x86_64 4.1.2-14.el6 @base
bc.x86_64 1.06.95-1.el6 @base
binutils.x86_64 2.20.51.0.2-5.36.el6 @base
bison.x86_64 2.4.1-5.el6 @base
btparser.x86_64 0.17-1.el6 @base
bzip2.x86_64 1.0.5-7.el6_0 @base
bzip2-libs.x86_64 1.0.5-7.el6_0 @base
ca-certificates.noarch 2010.63-3.el6_1.5 @base
cairo.x86_64 1.8.8-3.1.el6 @base
cdparanoia-libs.x86_64 10.2-5.1.el6 @base
centos-indexhtml.noarch 6-1.el6.centos @base
centos-release.x86_64 6-4.el6.centos.10 @base
checkpolicy.x86_64 2.0.22-1.el6 @base
chkconfig.x86_64 1.3.49.3-2.el6 @base
cloog-ppl.x86_64 0.15.7-1.2.el6 @base
compat-gcc-34.x86_64 3.4.6-19.el6 @base
compat-gcc-34-g77.x86_64 3.4.6-19.el6 @base
compat-libf2c-34.x86_64 3.4.6-19.el6 @base
compat-libstdc++-296.i686 2.96-144.el6 @base
compat-readline5.x86_64 5.2-17.1.el6 @base
cpio.x86_64 2.10-11.el6_3 @base
cpp.x86_64 4.4.7-3.el6 @base
cracklib.x86_64 2.8.16-4.el6 @base
cracklib-dicts.x86_64 2.8.16-4.el6 @base
createrepo.noarch 0.9.9-17.el6 @base
cronie.x86_64 1.4.4-7.el6 @base
cronie-anacron.x86_64 1.4.4-7.el6 @base
crontabs.noarch 1.10-33.el6 @base
cvs.x86_64 1.11.23-15.el6 @base
cyrus-sasl.x86_64 2.1.23-13.el6_3.1 @base
cyrus-sasl-lib.x86_64 2.1.23-13.el6_3.1 @base
dash.x86_64 0.5.5.1-4.el6 @base
db4.x86_64 4.7.25-17.el6 @base
db4-utils.x86_64 4.7.25-17.el6 @base
dbus.x86_64 1:1.2.24-7.el6_3 @base
dbus-libs.x86_64 1:1.2.24-7.el6_3 @base
dejavu-fonts-common.noarch 2.30-2.el6 @base
dejavu-lgc-sans-mono-fonts.noarch 2.30-2.el6 @base
dejavu-sans-mono-fonts.noarch 2.30-2.el6 @base
deltarpm.x86_64 3.5-0.5.20090913git.el6 @base
device-mapper.x86_64 1.02.77-9.el6 @base
device-mapper-event.x86_64 1.02.77-9.el6 @base
device-mapper-event-libs.x86_64 1.02.77-9.el6 @base
device-mapper-libs.x86_64 1.02.77-9.el6 @base
device-mapper-multipath.x86_64 0.4.9-64.el6 @base
device-mapper-multipath-libs.x86_64 0.4.9-64.el6 @base
device-mapper-persistent-data.x86_64 0.1.4-1.el6 @base
dhclient.x86_64 12:4.1.1-34.P1.el6.centos @base
dhcp-common.x86_64 12:4.1.1-34.P1.el6.centos @base

 54

diffutils.x86_64 2.8.1-28.el6 @base
dmraid.x86_64 1.0.0.rc16-11.el6 @base
dmraid-events.x86_64 1.0.0.rc16-11.el6 @base
dracut.noarch 004-303.el6 @base
dracut-kernel.noarch 004-303.el6 @base
e2fsprogs.x86_64 1.41.12-14.el6 @base
e2fsprogs-libs.x86_64 1.41.12-14.el6 @base
ecj.x86_64 1:3.4.2-6.el6 @base
ed.x86_64 1.1-3.3.el6 @base
elfutils.x86_64 0.152-1.el6 @base
elfutils-libelf.x86_64 0.152-1.el6 @base
elfutils-libs.x86_64 0.152-1.el6 @base
ethtool.x86_64 2:3.5-1.el6 @base
file.x86_64 5.04-15.el6 @base
file-libs.x86_64 5.04-15.el6 @base
filesystem.x86_64 2.4.30-3.el6 @base
findutils.x86_64 1:4.4.2-6.el6 @base
fipscheck.x86_64 1.2.0-7.el6 @base
fipscheck-lib.x86_64 1.2.0-7.el6 @base
flex.x86_64 2.5.35-8.el6 @base
fontconfig.x86_64 2.8.0-3.el6 @base
fontpackages-filesystem.noarch 1.41-1.1.el6 @base
foomatic.x86_64 4.0.4-1.el6_1.1 @base
foomatic-db.noarch 4.0-7.20091126.el6 @base
foomatic-db-filesystem.noarch 4.0-7.20091126.el6 @base
foomatic-db-ppds.noarch 4.0-7.20091126.el6 @base
gamin.x86_64 0.1.10-9.el6 @base
gawk.x86_64 3.1.7-10.el6 @base
gcc.x86_64 4.4.7-3.el6 @base
gcc-c++.x86_64 4.4.7-3.el6 @base
gcc-gfortran.x86_64 4.4.7-3.el6 @base
gcc-gnat.x86_64 4.4.7-3.el6 @base
gcc-java.x86_64 4.4.7-3.el6 @base
gcc-objc.x86_64 4.4.7-3.el6 @base
gcc-objc++.x86_64 4.4.7-3.el6 @base
gdb.x86_64 7.2-60.el6 @base
gdbm.x86_64 1.8.0-36.el6 @base
gettext.x86_64 0.17-16.el6 @base
ghostscript-fonts.noarch 5.50-23.1.el6 @base
glib2.x86_64 2.22.5-7.el6 @base
glibc.i686 2.12-1.107.el6 @base
glibc.x86_64 2.12-1.107.el6 @base
glibc-common.x86_64 2.12-1.107.el6 @base
glibc-devel.x86_64 2.12-1.107.el6 @base
glibc-headers.x86_64 2.12-1.107.el6 @base
gnupg2.x86_64 2.0.14-4.el6 @base
gpgme.x86_64 1.1.8-3.el6 @base
gpm-libs.x86_64 1.20.6-12.el6 @base
grep.x86_64 2.6.3-3.el6 @base
groff.x86_64 1.18.1.4-21.el6 @base
grubby.x86_64 7.0.15-3.el6 @base
gstreamer.x86_64 0.10.29-1.el6 @base
gstreamer-plugins-base.x86_64 0.10.29-2.el6 @base
gstreamer-tools.x86_64 0.10.29-1.el6 @base
gtk2.x86_64 2.18.9-12.el6 @base
gzip.x86_64 1.3.12-18.el6 @base
hicolor-icon-theme.noarch 0.11-1.1.el6 @base
hwdata.noarch 0.233-7.9.el6 @base
info.x86_64 4.13a-8.el6 @base
iproute.x86_64 2.6.32-23.el6 @base
iptables.x86_64 1.4.7-9.el6 @base
iputils.x86_64 20071127-16.el6 @base
iso-codes.noarch 3.16-2.el6 @base
java-1.5.0-gcj.x86_64 1.5.0.0-29.1.el6 @base
java_cup.x86_64 1:0.10k-5.el6 @base
jpackage-utils.noarch 1.7.5-3.12.el6 @base
kbd.x86_64 1.15-11.el6 @base
kbd-misc.noarch 1.15-11.el6 @base
keyutils-libs.x86_64 1.4-4.el6 @base
kpartx.x86_64 0.4.9-64.el6 @base
lcms-libs.x86_64 1.19-1.el6 @base

 55

less.x86_64 436-10.el6 @base
libICE.x86_64 1.0.6-1.el6 @base
libSM.x86_64 1.2.1-2.el6 @base
libX11.x86_64 1.5.0-4.el6 @base
libX11-common.noarch 1.5.0-4.el6 @base
libXau.x86_64 1.0.6-4.el6 @base
libXcomposite.x86_64 0.4.3-4.el6 @base
libXcursor.x86_64 1.1.13-2.el6 @base
libXdamage.x86_64 1.1.3-4.el6 @base
libXext.x86_64 1.3.1-2.el6 @base
libXfixes.x86_64 5.0-3.el6 @base
libXfont.x86_64 1.4.5-2.el6 @base
libXft.x86_64 2.3.1-2.el6 @base
libXi.x86_64 1.6.1-3.el6 @base
libXinerama.x86_64 1.1.2-2.el6 @base
libXrandr.x86_64 1.4.0-1.el6 @base
libXrender.x86_64 0.9.7-2.el6 @base
libXt.x86_64 1.1.3-1.el6 @base
libXtst.x86_64 1.2.1-2.el6 @base
libXv.x86_64 1.0.7-2.el6 @base
libXxf86vm.x86_64 1.1.2-2.el6 @base
libacl.x86_64 2.2.49-6.el6 @base
libaio.x86_64 0.3.107-10.el6 @base
libart_lgpl.x86_64 2.3.20-5.1.el6 @base
libattr.x86_64 2.4.44-7.el6 @base
libcap.x86_64 2.16-5.5.el6 @base
libcap-ng.x86_64 0.6.4-3.el6_0.1 @base
libcom_err.x86_64 1.41.12-14.el6 @base
libdrm.x86_64 2.4.39-1.el6 @base
libedit.x86_64 2.11-4.20080712cvs.1.el6 @base
libevent.x86_64 1.4.13-4.el6 @base
libffi.x86_64 3.0.5-3.2.el6 @base
libfontenc.x86_64 1.0.5-2.el6 @base
libgcc.i686 4.4.7-3.el6 @base
libgcc.x86_64 4.4.7-3.el6 @base
libgcj.x86_64 4.4.7-3.el6 @base
libgcj-devel.x86_64 4.4.7-3.el6 @base
libgfortran.x86_64 4.4.7-3.el6 @base
libgnat.x86_64 4.4.7-3.el6 @base
libgnat-devel.x86_64 4.4.7-3.el6 @base
libgomp.x86_64 4.4.7-3.el6 @base
libgpg-error.x86_64 1.7-4.el6 @base
libgudev1.x86_64 147-2.46.el6 @base
libidn.x86_64 1.18-2.el6 @base
libjpeg-turbo.x86_64 1.2.1-1.el6 @base
libmng.x86_64 1.0.10-4.1.el6 @base
libnih.x86_64 1.0.1-7.el6 @base
libobjc.x86_64 4.4.7-3.el6 @base
libogg.x86_64 2:1.1.4-2.1.el6 @base
liboil.x86_64 0.3.16-4.1.el6 @base
libpciaccess.x86_64 0.13.1-2.el6 @base
libreport.x86_64 2.0.9-15.el6.centos @base
libreport-compat.x86_64 2.0.9-15.el6.centos @base
libreport-plugin-kerneloops.x86_64 2.0.9-15.el6.centos @base
libreport-plugin-reportuploader.x86_64 2.0.9-15.el6.centos @base
libreport-plugin-rhtsupport.x86_64 2.0.9-15.el6.centos @base
libreport-python.x86_64 2.0.9-15.el6.centos @base
libselinux.x86_64 2.0.94-5.3.el6 @base
libselinux-utils.x86_64 2.0.94-5.3.el6 @base
libsemanage.x86_64 2.0.43-4.2.el6 @base
libsepol.x86_64 2.0.41-4.el6 @base
libss.x86_64 1.41.12-14.el6 @base
libssh2.x86_64 1.4.2-1.el6 @base
libstdc++.x86_64 4.4.7-3.el6 @base
libstdc++-devel.x86_64 4.4.7-3.el6 @base
libsysfs.x86_64 2.1.0-7.el6 @base
libtar.x86_64 1.2.11-17.el6 @base
libthai.x86_64 0.1.12-3.el6 @base
libtheora.x86_64 1:1.1.0-2.el6 @base
libtiff.x86_64 3.9.4-9.el6_3 @base
libtool.x86_64 2.2.6-15.5.el6 @base

 56

libudev.x86_64 147-2.46.el6 @base
libusb.x86_64 0.1.12-23.el6 @base
libuser.x86_64 0.56.13-5.el6 @base
libutempter.x86_64 1.1.5-4.1.el6 @base
libvisual.x86_64 0.4.0-9.1.el6 @base
libxcb.x86_64 1.8.1-1.el6 @base
libxslt.x86_64 1.1.26-2.el6_3.1 @base
logrotate.x86_64 3.7.8-16.el6 @base
lua.x86_64 5.1.4-4.1.el6 @base
lvm2.x86_64 2.02.98-9.el6 @base
lvm2-libs.x86_64 2.02.98-9.el6 @base
lynx.x86_64 2.8.6-27.el6 @base
m2crypto.x86_64 0.20.2-9.el6 @base
m4.x86_64 1.4.13-5.el6 @base
mailcap.noarch 2.1.31-2.el6 @base
mailx.x86_64 12.4-6.el6 @base
make.x86_64 1:3.81-20.el6 @base
man.x86_64 1.6f-32.el6 @base
mcstrans.x86_64 0.3.1-4.el6 @base
memcached.x86_64 1.4.4-3.el6 @base
mercurial.x86_64 1.4-3.el6 @base
mesa-dri-drivers.x86_64 9.0-0.7.el6 @base
mesa-dri-filesystem.x86_64 9.0-0.7.el6 @base
mesa-dri1-drivers.x86_64 7.11-8.el6 @base
mesa-libGL.x86_64 9.0-0.7.el6 @base
mesa-libGLU.x86_64 9.0-0.7.el6 @base
mingetty.x86_64 1.08-5.el6 @base
mlocate.x86_64 0.22.2-4.el6 @base
module-init-tools.x86_64 3.9-21.el6 @base
mpfr.x86_64 2.4.1-6.el6 @base
mutt.x86_64 5:1.5.20-2.20091214hg736b6a.el6_1.1 @base
nano.x86_64 2.0.9-7.el6 @base
ncurses.x86_64 5.7-3.20090208.el6 @base
ncurses-base.x86_64 5.7-3.20090208.el6 @base
ncurses-libs.x86_64 5.7-3.20090208.el6 @base
neon.x86_64 0.29.3-2.el6 @base
nspr.x86_64 4.9.2-1.el6 @base
nss.x86_64 3.14.0.0-12.el6 @base
nss-softokn.x86_64 3.12.9-11.el6 @base
nss-softokn-freebl.i686 3.12.9-11.el6 @base
nss-softokn-freebl.x86_64 3.12.9-11.el6 @base
nss-sysinit.x86_64 3.14.0.0-12.el6 @base
nss-tools.x86_64 3.14.0.0-12.el6 @base
nss-util.x86_64 3.14.0.0-2.el6 @base
nss_compat_ossl.x86_64 0.9.6-1.el6 @base
openjpeg-libs.x86_64 1.3-9.el6_3 @base
openssh.x86_64 5.3p1-84.1.el6 @base
openssh-askpass.x86_64 5.3p1-84.1.el6 @base
openssh-clients.x86_64 5.3p1-84.1.el6 @base
openssh-server.x86_64 5.3p1-84.1.el6 @base
pakchois.x86_64 0.4-3.2.el6 @base
pam.x86_64 1.1.1-13.el6 @base
pango.x86_64 1.28.1-7.el6_3 @base
patch.x86_64 2.6-6.el6 @base
pax.x86_64 3.4-10.1.el6 @base
pcre.x86_64 7.8-6.el6 @base
perl-Error.noarch 1:0.17015-4.el6 @base
perl-URI.noarch 1.40-2.el6 @base
pinentry.x86_64 0.7.6-6.el6 @base
pkgconfig.x86_64 1:0.23-9.1.el6 @base
plymouth.x86_64 0.8.3-27.el6.centos @base
plymouth-core-libs.x86_64 0.8.3-27.el6.centos @base
plymouth-scripts.x86_64 0.8.3-27.el6.centos @base
policycoreutils.x86_64 2.0.83-19.30.el6 @base
poppler.x86_64 0.12.4-3.el6_0.1 @base
poppler-data.noarch 0.4.0-1.el6 @base
poppler-utils.x86_64 0.12.4-3.el6_0.1 @base
popt.x86_64 1.13-7.el6 @base
portreserve.x86_64 0.0.4-9.el6 @base
postfix.x86_64 2:2.6.6-2.2.el6_1 @base
ppl.x86_64 0.10.2-11.el6 @base

 57

procps.x86_64 3.2.8-25.el6 @base
psmisc.x86_64 22.6-15.el6_0.1 @base
pth.x86_64 2.0.7-9.3.el6 @base
pygpgme.x86_64 0.1-18.20090824bzr68.el6 @base
python.x86_64 2.6.6-36.el6 @base
python-deltarpm.x86_64 3.5-0.5.20090913git.el6 @base
python-iniparse.noarch 0.3.1-2.1.el6 @base
python-libs.x86_64 2.6.6-36.el6 @base
python-pycurl.x86_64 7.19.0-8.el6 @base
python-urlgrabber.noarch 3.9.1-8.el6 @base
qt3.x86_64 3.3.8b-30.el6 @base
readline.x86_64 6.0-4.el6 @base
redhat-logos.noarch 60.0.14-12.el6.centos @base
redhat-lsb.x86_64 4.0-7.el6.centos @base
redhat-lsb-compat.x86_64 4.0-7.el6.centos @base
redhat-lsb-core.x86_64 4.0-7.el6.centos @base
redhat-lsb-graphics.x86_64 4.0-7.el6.centos @base
redhat-lsb-printing.x86_64 4.0-7.el6.centos @base
redhat-rpm-config.noarch 9.0.3-42.el6 @base
rootfiles.noarch 8.1-6.1.el6 @base
rpm.x86_64 4.8.0-32.el6 @base
rpm-build.x86_64 4.8.0-32.el6 @base
rpm-libs.x86_64 4.8.0-32.el6 @base
rpm-python.x86_64 4.8.0-32.el6 @base
rrdtool.x86_64 1.3.8-6.el6 @base
rrdtool-devel.x86_64 1.3.8-6.el6 @base
rrdtool-doc.x86_64 1.3.8-6.el6 @base
rrdtool-perl.x86_64 1.3.8-6.el6 @base
rrdtool-python.x86_64 1.3.8-6.el6 @base
rrdtool-ruby.x86_64 1.3.8-6.el6 @base
rrdtool-tcl.x86_64 1.3.8-6.el6 @base
rsync.x86_64 3.0.6-9.el6 @base
rsyslog.x86_64 5.8.10-6.el6 @base
rubygems.noarch 1.3.7-1.el6 @base
screen.x86_64 4.0.3-16.el6 @base
sed.x86_64 4.2.1-10.el6 @base
setup.noarch 2.8.14-20.el6 @base
sgpio.x86_64 1.2.0.10-5.el6 @base
shadow-utils.x86_64 2:4.1.4.2-13.el6 @base
sinjdoc.x86_64 0.5-9.1.el6 @base
sqlite.x86_64 3.6.20-1.el6 @base
sudo.x86_64 1.8.6p3-7.el6 @base
sysfsutils.x86_64 2.1.0-7.el6 @base
sysstat.x86_64 9.0.4-20.el6 @base
sysvinit-tools.x86_64 2.87-4.dsf.el6 @base
tar.x86_64 2:1.23-11.el6 @base
tcl.x86_64 1:8.5.7-6.el6 @base
tcp_wrappers-libs.x86_64 7.6-57.el6 @base
time.x86_64 1.7-37.1.el6 @base
tk.x86_64 1:8.5.7-5.el6 @base
tmpwatch.x86_64 2.9.16-4.el6 @base
tokyocabinet.x86_64 1.4.33-6.el6 @base
udev.x86_64 147-2.46.el6 @base
unzip.x86_64 6.0-1.el6 @base
upstart.x86_64 0.6.5-12.el6 @base
urlview.x86_64 0.9-7.el6 @base
urw-fonts.noarch 2.4-10.el6 @base
usermode.x86_64 1.102-3.el6 @base
ustr.x86_64 1.0.4-9.1.el6 @base
vim-common.x86_64 2:7.2.411-1.8.el6 @base
vim-enhanced.x86_64 2:7.2.411-1.8.el6 @base
vim-minimal.x86_64 2:7.2.411-1.8.el6 @base
wget.x86_64 1.12-1.8.el6 @base
which.x86_64 2.19-6.el6 @base
xml-common.noarch 0.6.3-32.el6 @base
xmlrpc-c.x86_64 1.16.24-1209.1840.el6 @base
xmlrpc-c-client.x86_64 1.16.24-1209.1840.el6 @base
xorg-x11-font-utils.x86_64 1:7.2-11.el6 @base
xz.x86_64 4.999.9-0.3.beta.20091007git.el6 @base
xz-libs.x86_64 4.999.9-0.3.beta.20091007git.el6 @base
xz-lzma-compat.x86_64 4.999.9-0.3.beta.20091007git.el6 @base

 58

yajl.x86_64 1.0.7-3.el6 @base
yum.noarch 3.2.29-40.el6.centos @base
yum-metadata-parser.x86_64 1.1.2-16.el6 @base
yum-plugin-fastestmirror.noarch 1.1.30-14.el6 @base
yum-utils.noarch 1.1.30-14.el6 @base
zip.x86_64 3.0-1.el6 @base
zlib.x86_64 1.2.3-29.el6 @base
zlib-devel.x86_64 1.2.3-29.el6 @base
apr.x86_64 1.3.9-5.el6_2 @updates
at.x86_64 3.1.10-43.el6_2.1 @updates
bind-libs.x86_64 32:9.8.2-0.17.rc1.el6_4.4 @updates
bind-utils.x86_64 32:9.8.2-0.17.rc1.el6_4.4 @updates
coreutils.x86_64 8.4-19.el6_4.1 @updates
coreutils-libs.x86_64 8.4-19.el6_4.1 @updates
cups.x86_64 1:1.4.2-50.el6_4.4 @updates
cups-libs.x86_64 1:1.4.2-50.el6_4.4 @updates
curl.x86_64 7.19.7-36.el6_4 @updates
dbus-glib.x86_64 0.86-6.el6 @updates
elinks.x86_64 0.12-0.21.pre5.el6_3 @updates
expat.x86_64 2.0.1-11.el6_2 @updates
freetype.x86_64 2.3.11-14.el6_3.1 @updates
ghostscript.x86_64 8.70-15.el6_4.1 @updates
git.x86_64 1.7.1-3.el6_4.1 @updates
gmp.x86_64 4.3.1-7.el6_2.2 @updates
gnutls.x86_64 2.8.5-10.el6_4.1 @updates
initscripts.x86_64 9.03.38-1.el6.centos.1 @updates
jasper-libs.x86_64 1.900.1-15.el6_1.1 @updates
krb5-libs.x86_64 1.10.3-10.el6_4.2 @updates
ksh.x86_64 20100621-19.el6_4.3 @updates
libblkid.x86_64 2.17.2-12.9.el6_4.3 @updates
libcurl.x86_64 7.19.7-36.el6_4 @updates
libgcrypt.x86_64 1.4.5-9.el6_2.2 @updates
libpng.x86_64 2:1.2.49-1.el6_2 @updates
libproxy.x86_64 0.3.0-4.el6_3 @updates
libproxy-bin.x86_64 0.3.0-4.el6_3 @updates
libproxy-python.x86_64 0.3.0-4.el6_3 @updates
libtasn1.x86_64 2.3-3.el6_2.1 @updates
libuuid.x86_64 2.17.2-12.9.el6_4.3 @updates
libvorbis.x86_64 1:1.2.3-4.el6_2.1 @updates
libxml2.x86_64 2.7.6-12.el6_4.1 @updates
libxml2-python.x86_64 2.7.6-12.el6_4.1 @updates
mysql-libs.x86_64 5.1.69-1.el6_4 @updates
net-tools.x86_64 1.60-110.el6_2 @updates
openldap.x86_64 2.4.23-32.el6_4.1 @updates
openssl.x86_64 1.0.0-27.el6_4.2 @updates
passwd.x86_64 0.77-4.el6_2.2 @updates
perl.x86_64 4:5.10.1-131.el6_4 @updates
perl-CGI.x86_64 3.51-131.el6_4 @updates
perl-ExtUtils-MakeMaker.x86_64 6.55-131.el6_4 @updates
perl-ExtUtils-ParseXS.x86_64 1:2.2003.0-131.el6_4 @updates
perl-Git.noarch 1.7.1-3.el6_4.1 @updates
perl-Module-Pluggable.x86_64 1:3.90-131.el6_4 @updates
perl-Pod-Escapes.x86_64 1:1.04-131.el6_4 @updates
perl-Pod-Simple.x86_64 1:3.13-131.el6_4 @updates
perl-Test-Harness.x86_64 3.17-131.el6_4 @updates
perl-Test-Simple.x86_64 0.92-131.el6_4 @updates
perl-devel.x86_64 4:5.10.1-131.el6_4 @updates
perl-libs.x86_64 4:5.10.1-131.el6_4 @updates
perl-version.x86_64 3:0.77-131.el6_4 @updates
phonon-backend-gstreamer.x86_64 1:4.6.2-26.el6_4 @updates
pixman.x86_64 0.26.2-5.el6_4 @updates
qt.x86_64 1:4.6.2-26.el6_4 @updates
qt-sqlite.x86_64 1:4.6.2-26.el6_4 @updates
qt-x11.x86_64 1:4.6.2-26.el6_4 @updates
rightscale.x86_64 5.7.14-1 installed
ruby.x86_64 1.8.7.352-10.el6_4 @updates
ruby-devel.x86_64 1.8.7.352-10.el6_4 @updates
ruby-docs.x86_64 1.8.7.352-10.el6_4 @updates
ruby-irb.x86_64 1.8.7.352-10.el6_4 @updates
ruby-libs.x86_64 1.8.7.352-10.el6_4 @updates
ruby-rdoc.x86_64 1.8.7.352-10.el6_4 @updates

 59

ruby-ri.x86_64 1.8.7.352-10.el6_4 @updates
ruby-tcltk.x86_64 1.8.7.352-10.el6_4 @updates
subversion.x86_64 1.6.11-9.el6_4 @updates
tzdata.noarch 2013b-1.el6 @updates
util-linux-ng.x86_64 2.17.2-12.9.el6_4.3 @updates

 60

THIS PAGE INTENTIONALLY LEFT BLANK

 61

LIST OF REFERENCES

Ahn, L.V. (2006). Games with a purpose. Retrieved from
 http://www.cs.cmu.edu/~biglou/ieee-gwap.pdf

Babbin, J., Alder, R. (2004). Snort 2.1. 3-26. Bombay, India, Schroff Publishers

Bell, D. (2013). The Crowdsourcing Handbook. Newstead, Australia, Emereo Publishing

Chou, Y. (2012). A Private Cloud Delivers IT as a Service. Retrieved from
 http://blogs.technet.com/b/yungchou/

Dean, D. (2013). Crowd Sourced Formal Verification. Presented at CSFV PI Meeting-
Conference, Skamania-WA

Dean, D. (2013). Implementing a Prototype for CSFV. Speech at Naval Postgraduate
School, Monterey, CA.

Del Villar, A. (2013). CSFV PI meeting. CSFV Conference, Skamania, WA.

Diffie, W., Hellman, M. (1976). New Directions in Cryptography. Transactions on
Information Theory, IT-22, no.6. Retrieved from http://www-
ee.stanford.edu/~hellman/publications/24.pdf

DISA. (2006). Webserver STIG. Retrieved from http://iase.disa.mil/stigs/

DISA. (2007). Network infrastructure STIG. Retrieved from http://iase.disa.mil/stigs/

DISA. (2013). ESXi 5 Technology Overview. Retrieved from
 http://iase.disa.mil/stigs/

Gabiani, G. (2011). Cloud Computing: Emerging Technology. Retrieved from
http://www.technologydoesbusiness.com/whiteboard/2011/

Gregory, P. (2010). CISSP Guide to security essentials. Boston, MA: Cengage Learning
Publishing.

Hagel, C. (2013). The Cyber Dimension to Asian Security. Speech at Shangri-La Security
Dialogue Conference, Singapore.

Halfond, W., Orso, A. (2005). Combining static analysis and runtime monitoring to
counter sql-iinjection attacks. Workshop on Dynamic Analysis- WODA-05.
Retrieved from http://www.cc.gatech.edu/~orso/papers
/halfond.orso.WODA05.pdf

Howe, J. (2008). Crowdsourcing. New York: Crown Publishing.

 62

Kaminski, P. (2013). Resilient Military Systems and advanced cyber threat. (20301).
Washington. D.C.: Office of the Under Secretary of Defense for Acquisition,
Technology and Logistics. Retrieved from http://www.acq.osd.mil/dsb/reports
/ResilientMilitarySystems.CyberThreat.pdf

Kerckhoffs, A. (1883). La cryptographie militaire. Journal des Sciences Militaires, Vol.9,
pp. 5-38. Retrieved from http://www.petitcolas.net/fabien/kerckhoffs
/crypto_militaire_1.pdf

Kew, N. (2003). Running a Reverse Proxy in Apache. Retrieved from
http://www.apachetutor.org/admin/reverseproxies

Kuznetzky, D. (2011). Virtualization manager’s guide. Sebastopol, CA: O’Reilly.

Lau, W. (2011). A Comprehensive Introduction to Cloud Computing. Retrieved from
https://www.simple-talk.com/cloud/development/

Lynch, A. (2012). Crowdsourcing Is Booming In Asia. Retrieved from
 http://techcrunch.com/2012/12/08/asias-secret-crowdsourcing-boom/

Mell, P., Grance, T. (2011). The NIST Definition of Cloud Computing (800-145).
Gaithersburg-MD: National Institute of Standards and Technology. Retrieved
from http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf

Montalbano, E. (2011). DOD Looks To Make A Game Of SoftwareTesting. Retrieved
from http://www.informationweek.com/government/

Panetta, L. (2012). Defending The Nations Critical Infrastructure From Cyber Security
Threats. Speech at Intrepid Sea, Air and Space Museum, New York, NY.

Patrikakis, C., Masikos, M., Zouraraki, O. (2004). Distributed Denial of Service Attacks.
Retrieved from http://www.cisco.com/web/about/ac123/ac147/archived_issues/

Redhat Documentations. (2013). Red Hat Enterprise Linux Installation Guide. Retrieved
 from https://access.redhat.com/site/documentation/

Rivera, J., Van der Meulen, R. (2013). Gartner Says Worldwide Security Market to Grow
8.7 Percent in 2013. Retrieved from http://www.gartner.com
/newsroom/id/2512215.

Oxenhandler, D., (2003). Designing a Secure Local Area Network. Retrieved from
 http://www.sans.org/reading-room/whitepapers/bestprac/

Scarfone, K., Souppaya and M., Hoffman, P. (2011). Guide to security for full
 virtualization technologies. Gaithersburg-MD: National Institute of

 63

Standards and Technology 1-5. Retrieved from
 http://csrc.nist.gov/publications/nistpubs/800-125/SP800-125-final.pdf

Shilovitsky, O. (2013). Will Enterprise PLM Embrace Public Cloud. Retrieved from
http://beyondplm.com/2013/02/15/will-enterprise-plm-embrace-hybrid-cloud/

Smoot, S., Tan, N. (2012). Private Cloud Computing. Waltham, MA: Morgan
 Kaufmann Publishing.

Stallings, W., Brown, L. (2008). Computer security, principles and practice.Upper
Saddle River, NJ: Prentice Hall.

Department of Defense. (July, 2012). DoD cloud computing strategy [Memorandum].
Washington, D.C. Retrieved from http://www.defense.gov/news
/dodcloudcomputingstrategy.pdf

Tanenbaum, A. (2003). Computer Networks. Upper Saddle River: NJ, Prentice Hall.

Thomas, G. (2013). Windows 8 Hyper-Visor. Retrieved from
http://www.computerperformance.co.uk/win8/

Tracy, M. (2007). NIST Guidelines On Securing Public Web Servers. Gaithersburg-MD:
National Institute of Standards and Technology. Retrieved from
http://csrc.nist.gov/publications/nistpubs/800-44-ver2/SP800-44v2.pdf

Winkler, V. (2011). Securing the Cloud: Cloud Computer Security Techniques and
Tactics. Waltham, MA: Syngress Publishing.

 64

THIS PAGE INTENTIONALLY LEFT BLANK

 65

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

